DEFENDING AMERICA

ASYMMETRIC AND TERRORIST ATTACKS WITH RADIOLOGICAL AND NUCLEAR WEAPONS

Anthony H. Cordesman
Arleigh A. Burke Chair in Strategy

SEPTEMBER 23, 2001
Acknowledgements

The author would like to thank Linnea Raines, Andrew Li, Preston Golson, and Aviva Roller for their assistance in researching and editing this report.
Table of Contents

Washington, DC 20006

ASYMMETRIC AND TERRORIST ATTACKS WITH RADIOLOGICAL AND NUCLEAR WEAPONS ... 1

TYPES OF ATTACK: DETERMINING FUTURE METHODS OF ATTACK AND THE NEEDED RESPONSE ... 1

- ILLUSTRATIVE ATTACK SCENARIOS .. 3
- “CONVENTIONAL” MEANS OF ATTACK ... 6
- WEAPONS OF MASS DESTRUCTION .. 8

RADIOLOGICAL WEAPONS AS MEANS OF ATTACK ... 15

- THE PRACTICAL CHANCES OF USING RADIOLOGICAL WEAPONS .. 18
- THE PRACTICAL RISKS AND EFFECTS OF USING RADIOLOGICAL ... 19
- WEAPONS ... 20

NUCLEAR WEAPONS AS MEANS OF ATTACK ... 23

- LETHALITY AND EFFECTIVENESS ... 25

IS THERE A THREAT FROM STATE ACTORS, PROXIES, TERRORISTS, AND EXTREMISTS? THE PROBLEM OF GETTING

- THE WEAPON .. 29
- THE PROBLEM OF DELIVERY .. 34

DEALING WITH THE RISK AND IMPACT OF NUCLEAR ATTACKS .. 35

PROBLEMS IN RESPONDING TO A NUCLEAR ATTACK .. 36

- Cost-Effectiveness of Real-World Options .. 41

RETHINKING THE UNTHINKABLE ABOUT NUCLEAR ATTACKS ON THE US HOMELAND 44

- China ... 47
- India ... 47
- Iran ... 48
- Iraq ... 48
- Libya ... 48
- North Korea .. 49
- Pakistan .. 49
- Russia .. 50
- Syria .. 51
List of Charts, Tables, and Figures

Table 4.1..11
Key Characteristics of Weapons of Mass Destruction -Part One ..11
Table 4.1..13
Key Characteristics of Weapons of Mass Destruction -Part Two ..13
Table 4.2..14
The Comparative Effects of Biological, Chemical, and Nuclear Weapons Delivered14
Against a Typical Urban Target ..14
Table 4.9..47
US Department of Defense Estimate of Potential National Threats Intentions Involving Nuclear Weapons47
Table 4.10..52
The Thermal and Blast Effects of Nuclear Weapons - Part One: The US Department of Defense Estimates52
Table 4.10..53
The Thermal and Blast Effects of Nuclear Weapons - Part Two: The British RUSI Estimates53
Chart 4.4 ...54
The Nominal Lethality of Different Nuclear Weapons ..54
Chart 4.5 ...55
The Relative Killing Effect of Chemical vs. Biological vs. Nuclear Weapons ..55
Types of Attack: Determining Future Methods of Attack and the Needed Response

The US must plan its Homeland defense policies and programs for a future in which there is no way to predict the weapon that will be used or the method chosen to deliver a weapon which can range from a small suicide attack by an American citizen to the covert delivery of a nuclear weapon by a foreign state. There is no reason the US should assume that some convenient Gaussian curve or standard deviation, will make small or medium level attacks a higher priority over time than more lethal forms.

The US government is still deciding how to come to grips with these problems and how to assess possible methods of attack. A GAO report that summarized CIA and FBI views on these issues reached the following conclusions, although it must be stressed that the analysis focused on the normal historical pattern of actions by terrorists/extremists, and largely excluded attacks by state actors, proxy attacks, or covert attacks.

The possibility that terrorists may use chemical or biological materials may increase over the next decade, according to intelligence agencies. According to the Central Intelligence Agency (CIA), interest among non-state actors, including terrorists, in biological and chemical materials is real and growing and the number of potential perpetrators is increasing. The CIA also noted that many such groups have international networks and do not need to be tied to state sponsors for financial and technical support. Nonetheless, the CIA continues to believe that terrorists are less likely to use chemical and biological weapons than conventional explosives. We previously reported that according to intelligence agencies, terrorists are less likely to use chemical and biological weapons than conventional explosives, at least partly because chemical and biological agents are difficult to weaponize and the results are unpredictable.

…The CIA classified the specific agents identified in intelligence assessments that would more likely be used by foreign-origin terrorists. The CIA also classified the intelligence judgments about the chances that state actors with successful chemical and/or biological warfare programs would share their weapons and materials with terrorists or terrorist groups. Unlike the foreign-origin threat, the FBI’s analysts’ judgments concerning the more likely chemical and biological agents that may be used by domestic-origin terrorists have not been captured in a formal assessment. However, FBI officials shared their analyses of the more likely biological and chemical threat agents on the basis of substances used or threatened in actual cases.

In analyzing domestic-origin threats, FBI officials grouped chemical and biological agents and did not specify individual agents as threats. Although the FBI has not addressed the specific types of chemical or biological weapons that may be used by domestic terrorists in the next 2 to 5 years, FBI officials believe that domestic terrorists would be more likely to use or threaten to use biological agents than chemical agents.

The FBI’s observation is based on an increase in reported investigations involving the use of biological materials. In 1997, of the 74 criminal investigations related to weapons of mass destruction, 30 percent (22)
were related to the use of biological materials. In 1998, there were 181 criminal investigations related to weapons of mass destruction, and 62 percent (112) were related to the use of biological materials. Most of these investigations involved threats or hoaxes. The FBI estimated that in 1997 and 1998, approximately 60 percent of biological investigations were related to anthrax hoaxes.

The FBI ranks groups of chemical and biological agents on its threat spectrum according to the likelihood that they would be used.

- Biological toxins: any toxic substance of natural origin produced by an animal or plant. An example of a toxin is ricin, a poisonous protein extracted from the castor bean.
- Toxic industrial chemicals: chemicals developed or manufactured for use in industrial operations such as manufacturing solvents, pesticides, and dyes. These chemicals are not primarily manufactured for the purpose of producing human casualties. Chlorine, phosgene, and hydrogen cyanide are industrial chemicals that have also been used as chemical warfare agents.
- Biological pathogens: any organism (usually living) such as a bacteria or virus capable of causing serious disease or death. Anthrax is an example of a bacterial pathogen.
- Chemical agents: a chemical substance that is intended for use in military operations to kill, seriously injure, or incapacitate people. The FBI excludes from consideration riot control agents and smoke and flame materials. Two examples of chemical agents are Sarin (nerve agent) and mustard gas (blister agent).

The First Annual Report of the Advisory Panel to Assess Domestic Response Capabilities for Terrorism Involving the Use of Weapons of Mass Destruction took a somewhat different path. It downplayed the CBRN threat largely because of the current technical problems non-state actors confront in using weapons of mass destruction.

Many government officials and concerned citizens believe that it is not a question of if, but when, an incident will occur that involves the use by a terrorist of a chemical, biological, radiological, and nuclear (CBRN) weapon – a so-called ‘weapon of mass destruction’ (WMD – that is designed, intended or has the capability to cause ‘mass destruction’ or ‘mass casualties.’ In recent years, some has depicted terrorist incidents as causing catastrophic loss of life and extensive structural and environmental damage as not only possible but probable. Such depictions do not accurately portray the full range of terrorist threats...While such a devastating event is within the realm of possibility…

In our opinion, some fundamental questions should be answered before the federal government builds and expands programs, plans, and strategies to deal with the threat of WMD terrorism: How easy or difficult is it for terrorists (rather than state actors) to successfully use chemical or biological WMDs in an attack causing mass casualties? And if it is easy to produce and disperse chemical and biological agents, why have there been no WMD terrorist attacks before or since the Tokyo subway incident? What chemical and biological agents does the government really need to be concerned about? We have not yet seen a thorough assessment or analysis of these questions. It seems to us that, without such an assessment or analysis and consensus in the policy-making community, it would be very difficult—maybe impossible—to properly shape programs and focus resources.

Statements in testimony before the Congress and in the open press by intelligence and scientific community officials on the issue of making and delivering a terrorist WMD sometimes contrast sharply. On the one hand, some statements suggest that developing a WMD can be relatively easy. For example, in 1996, the Central Intelligence Agency Director testified that chemical and biological weapons can be produced with
relative ease in simple laboratories, and in 1997, the Central Intelligence Agency Director said that “delivery and dispersal techniques also are effective and relatively easy to develop.” One article by former senior intelligence and defense officials noted that chemical and biological agents can be produced by graduate students or laboratory technicians and that general recipes are readily available on the internet.

On the other hand, some statements suggest that there are considerable difficulties associated with successfully developing and delivering a WMD. For example, the Deputy Commander of the Army’s Medical Research and Materiel Command testified in 1998 about the difficulties of using WMDs, noting that “an effective, mass-casualty producing attack on our citizens would require either a fairly large, very technically competent, well-funded terrorist program or state sponsorship.” Moreover, in 1996, the Director of the Defense Intelligence Agency testified that the agency had no conclusive information that any of the terrorist organizations it monitors were developing chemical, biological, or radiological weapons and that there was no conclusive information that any state sponsor had the intention to provide these weapons to terrorists. In 1997, the Central Intelligence Agency Director testified that while advanced and exotic weapons are increasingly available, their employment is likely to remain minimal, as terrorist groups concentrate on peripheral technologies such as sophisticated conventional weapons.

Illustrative Attack Scenarios

The federal, state, and local governments are almost certainly correct in assuming that the current threat of conventional attack is notably higher than the risk of CBRN attack, and that the use of relatively low levels of CBRN attack is currently higher than the risk of high levels of CBRN attack. The analysis of the nature and lethality of the threat changes considerably, however, if states conduct covert CBRN attacks, or give them to proxies or independent movements. It also changes over time as technology makes the use of biological weapons more available, and as the time horizon for estimating the risk of some form of high level CBRN attack is extended to the quarter of the country that US planners must consider in shaping long-term programs and RDT&E activities.

Under these conditions, there are many scenarios where different types of CBRN weapons could have lethalities and costs up to several orders of magnitude higher than those that occurred as a result of the World Trade Center, Oklahoma City, and Aum Shinrikyo attacks. Consider the following scenarios:
• A radiological powder is introduced into the air conditioning systems of several high-rise office buildings, hostels, etc., possibly in several cities over a matter of weeks. Symptoms are only detected over days or weeks and public warning is given several weeks later. The authorities now detect the presence of such a powder, but cannot estimate its long-term lethality and have no precedents for decontamination. Local tourism collapses, no one will enter the building area, and the buildings eventually have to be torn down and rebuilt.

• A Country X or a Country X-backed terrorist group smuggles in parts for a crude gun-type nuclear device. The device is built in a medium sized commercial truck. The group uses a US Department of Defense weapons effects manual, maps a US city to maximize fallout effects in an area filled with buildings with heavy metals, and waits for a wind maximizing the fallout impact. The group also searches the US literature response measures to pick wind patterns that complicate the response effort and affect a maximum number of first responders. The bomb explodes with a yield of only a few kilotons, but with high levels of radiation. Immediate casualties are serious and the long-term death rate mounts steadily with time.

• Several workers move drums labeled as cleaning agents into a large shopping mall, large public facility, subway, train station, or airport. They dress as cleaners and are wearing what appear to be commercial dust filters or have taken the antidote for the agent they will use. They mix the feedstocks for a persistent chemical agent at the site during a peak traffic period.

• Immunized terrorists carry Anthrax powder into a building or urban area in containers designed to make them look like shopping bags, brief cases, suitcases, etc. They pick sites where their study of federal, state, and local governments indicate that detection is unlikely, and local response capabilities are limited. They slowly scatter the powder as they walk through the areas. The US does not detect the attacks until days or weeks after they occur. It then finds it has no experience with decontaminating a number of large buildings or areas where Anthrax has entered the air system and is scattered throughout closed areas. After long debates over methods and safety levels, the facilities and areas are temporarily abandoned. (A variation on this scenario is the use of a form of inhaled Anthrax modified to prevent effective immunization and use of normal medical treatment.

• A Country X or a Country X-backed terrorist group seeking to “cleanse” the US introduces a modified type culture of Ebola or a similar virus into urban areas. It scatters infectious cultures for which there is no effective immunization and only limited treatment, capitalizing on years of strategic warning regarding what vaccines the US is developing and stockpiling, and the open literature on the limits to US detection and response capabilities. By the time the attack(s) are detected, they have reached epidemic proportions, causing the collapse of medical facilities and emergency response capabilities. Other nations and regions have no alternative other than to isolate the part of the US under attack, letting the disease take its course.

• A Country X or a Country X-backed terrorist group modifies the valves on a Japanese remote-controlled crop spraying helicopter that has been imported legally for agricultural purposes. It uses this system at night or near dawn to spray a chemical or biological agent at altitudes below radar coverage in a line-source configuration. Alternatively, it uses a large home-built RPV with simple GPS guidance. The device eventually crashes undetected into the sea or in the desert. Delivery of a chemical agent achieves far higher casualties than a conventional military warhead. A biological agent would be equally effective and the first symptoms might appear days after the actual attack – by which time the cause would be impossible to determine and treatment could be difficult or impossible.

• A truck filled with what appears to be light gravel is driven through the streets of a city during rush hour or another heavy traffic period. A visible powder does come out through the tarpaulin covering the truck, but the spread of the power is so light that no attention is paid to it. The driver and his assistant are
immunized against the modified form of Anthrax carried in the truck, which is being released from behind the gravel or sand in the truck. The truck slowly quarters key areas of the city. Unsuspected passersby and commuters not only are infected, but carry dry spores home and into other areas. By the time the first major symptoms of the attack occur some 3-5 days later, Anthrax pneumonia is epidemic and some septicemic Anthrax has appeared. Some 40-65% of the exposed population dies and medical facilities collapse causing serious, lingering secondary effects.

- A Country X or a Country X-backed terrorist group scatters high concentrations of a radiological, chemical, or biological agent in various areas in a city, and trace elements into the processing intakes to the local water supply. When the symptoms appear, the terrorist group makes its attack known, but claims that it has contaminated the local water supply. The authorities are forced to confirm that water is contaminated and mass panic ensues.

- Immunized terrorists carry small amounts of Anthrax or a similar biological agent onto a passenger aircraft like a B-747, quietly scatter the powder, and deplane at a regular scheduled stop. No airport detection system or search detects the agent on the plane. Some 70-80% of those who fly on the aircraft die as a result of symptoms that only appear days later. It takes weeks to detect the fact that the aircraft remains contaminated.

- Several identical nuclear devices are smuggled out of the FSU. One of the devices is disassembled to determine the precise technology and coding system used in the weapon’s PAL. This allows users to activate the remaining weapons. The weapon is then disassembled to minimize detection with the fissile core shipped covered in lead. The weapon is successfully smuggled into the periphery of an urban area outside any formal security perimeter. A 10+ kiloton ground burst destroys a critical area and blankets the region in fallout.

- The same device is shipped to a US port area in a modified standard shipping container equipped with considerable shielding and detection and triggering devices that set it off either when the container is opened at any point near or in the US or using information from a GPS system that sets it off automatically when it reaches the proper coordinates. The direct explosive effect is significant, and even if it detonates at Customs, the damage and “rain out” contaminate a massive local area.

- A Country X or a Country X-backed develops a radiation fallout model using local weather data that it confirms by sending out scouts with simple commercial wind measurement equipment and cellular phones. It waits for the ideal wind pattern and detonates a nuclear device for maximum contamination of a city or critical economic areas. Alternatively, the same group uses a similar weather model, waits for the proper wind pattern and allows the wind to carry a biological agent over a city.

- Simultaneous release takes place of Anthrax spores at 10-20 scattered subway platforms during rush hour, and at commuter rail stations as well. No notice is given of the attack. Incubation takes 1-7 days, and the attack is only detected when massive numbers of cases in the acute phase exhibit flu-like symptoms and then enter the breathing difficulty and shock phase (1-2 days after incubation.) Several million commuters are potential exposed, but the locations of the attack are unknown, and effective triage is now impossible. Prompt treatment is no longer possible. Local and regional medical facilities collapse.

- An illegal smallpox culture is used or stolen. The agent is planted in the air duct of aircraft flying to an airport in the target country. The first cases occur two weeks after the flight(s). Widespread infection presents major problems because of a lack of the ability to trace passengers and secondary infections. Mass panic affects national medical facilities and some 10-30% of those infected die.

- A freighter carrying fertilizer enters a port and docks. In fact, the freighter has mixed the fertilizer with a
catalyst to create a massive explosion that also disseminates a large amount of a radiological, and/or biological agent. Response focuses on the damage done by the resulting explosion. The scattering of a radiological or biological weapon over the area is only detected days later.

- A large terrorist device goes off in a populated, critical economic, or military assembly area – scattering mustard or nerve gas. Emergency teams react quickly and deal with the chemical threat and the residents are evacuated. Only later does it become clear that the device also included a biological agent and that the response to this “cocktail” killed most emergency response personnel and the evacuation rushed the biological agent to a much wider area.

- Country X or a proxy group attacks US agriculture with a foreign pest or disease that could be transmitted by normal commerce and which is genetically enhanced. The US suffers major economic damage and never knows it is under attack. Alternatively, it uses a mix of normal plant diseases plus an add on weaponized agent. The US fails to react to the added agent until it discovered the true scale of the problem weeks later, it then finds it has only limited near to mid-term countermeasures. It never conclusively identifies its attacker.

- Country X, a terrorist or proxy group attacks the US with a biological agent in very small amounts in many areas in the US. The US is forced to mount a massive nation-wide preemptive effort at vast expense, even though it is only under limited attack. The attack is tailored to counter the highly detailed open literature on US federal, state, and local detection and response capabilities.

- A local terrorist group produces Ricin from castor beans and either distributes the toxin through the air intake of a government building or sprays it from a truck moving down a street. The first symptoms do not appear until three hours later and there is no know treatment. Significant deaths occur within 36-72 hours.

This list of possible attack scenarios illustrates the fact that a wide range of highly lethal CBRN attacks are practical, although most would now require an attacker to at least have access to the level of technology available only to governments. Second, it shows how dangerous it is to assume that attacks have to follow any rules or be carried out in a predictable way. Third, it shows that many attacks can defeat “first response” as well as avoid early US efforts at detection or containment, and/or can be tailored to bypass or counter many of the measures the US is currently exploring for Homeland defense. Fourth, it illustrates the fact that attackers can use more than one means of attack at the same time. Finally, it illustrates the dangers of leaving any gap in Homeland defense between responding to overt warfare like missile attacks and to relatively limited attacks by terrorists.

“Conventional” Means of Attack

The previous scenarios do not mean that attacks using conventional explosives are not
lethal, or more probable than CBRN attacks. Most terrorist/extremist attacks to date on Americans inside and outside the US have used conventional explosives, and the World Trade Center and Oklahoma City bombings show that such attacks can be very costly. There are also good reasons why some federal agencies see the large-scale use of conventional explosives as a “weapon on mass destruction.”

The US Department of Defense has carried out many vulnerability analyses over the years that have highlighted critical targets for conventional attack ranging from communications grids to political leadership. Some of these studies focused on the risk of using high explosive attacks by Soviet Spetznaz during the Cold War, and exposed the vulnerability of key plants and military facilities in the US. US utility companies have carried out vulnerability studies and have found other important “weak links” in the US infrastructure. They have found that conventional attacks could be far more lethal if the attacker had the expertise to target vulnerabilities and place explosives more precisely than terrorists have done in the past.

There is also no reason that attackers cannot combine conventional explosives with the use of weapons of mass destruction. Sophisticated attackers might well find that a mix of different forms of attacks would do most to increase damage or political effect. One such scenario might be mixing a conventional bomb with a chemical or biological weapon, with the idea that the rush of response teams into the bombed area would greatly increase the number of casualties.

As a result, it is clear that the US needs to continue to improve many of its capabilities to detect conventional forms of attack, improve its regular counterterrorism and law enforcement activity, improve its defenses, and consider finding ways of reducing conventional vulnerability as well as deal with CBRN attacks. What is not clear, however, is how much of this effort should be part of new Homeland Defense activities as distinguished from part of the normal ongoing effort to improve counterterrorism, security procedures, and the effort to secure airports, major government facilities, utilities, etc. It may be best for Homeland Defense to concentrate on what should or should not be done to deal with the unique threat posed by weapons of mass
destruction, knowing that such improvements will have an impact in improving US capabilities
to deal with lesser threats and leaving the primary focus of such “defense” activity up to the
Department of Justice, FBI, FEMA, and state and local authorities.

The previous historical analyses of patterns of attack does not indicate that conventional
explosives and weapons now pose the kind of major threat to the US that requires a major
response beyond existing counter-terrorism, law enforcement, and emergency response
capabilities. It is also important to note in this regard that risk, casualties and damage are an
actual fact of life. The US homeland is under almost constant attack by a terrorist called
“Mother Nature,” and that accidents pose at least as much of a historical threat as conventional
terrorism.

Weapons of Mass Destruction

The previous scenarios do indicate, however, that the US must fully recognize the risk
posed by chemical, biological, nuclear, and radiological weapons differ sharply in character and
in their effects. Each form of weapon can be used in ways that present radically different
problems for defense and response. The key differences in the character and use each type of
weapon are summarized in Table 4.1, and it is clear that each can have very different impacts,
regardless of whether it is used against military or civilian targets.

The broad differences in the lethality of each type of weapon are equally important, and
are shown in Table 4.2. It should be noted, however, that much depends on the size of the
weapon and the way in which it is employed. The actual design of a given weapon or device is
almost totally unpredictable but will be critical in determining its actual lethality. Once again,
there also are no clear precedents or paradigms that can be used for planning Homeland defense.

These problems are compound by the fact that theoretical lethality models are filled with
gross uncertainties, and there is little chance that any current database, model, or simulation can
be used to accurately predict the actual consequences of the use of such weapons. The data in
Tables Five and Six are typical of such modes and they are derived from models whose primary
purpose was to examine what state actors could do using bombs and missiles in warfare. They were not intended to reflect the character and lethality of the chemical, biological, nuclear, and radiological weapons in the kind of smaller attacks that might take place under covert conditions, or by proxies, terrorists, and extremists. There is also good historical reason to question whether chemical weapons are normally as lethal as Tables 4.1 and 4.2 imply. They fail to distinguish between methods of delivery of biological weapons and tacitly assume the optimal use of dry micropowders when actual attacks may use much cruder “wet” weapons with limited or no lethality.

There also is no reason to assume that effects should be measured in terms of casualties or physical damage attacks using “weapons of mass destruction” do not have to be used to cause mass destruction. With the exception of nuclear weapons, they can be used in virtually any size, and attackers can exploit their different effects to attack very small targets and highly localized areas as well as cities and large populated areas. Even nuclear weapons are available in fractions of a kiloton, and chemical, biological, and radiological weapons can be used for the purposes of assassination or attacking individual buildings.

Attackers will generally have a political or ideological motive. The psychological and political aspects of using weapons of mass destruction cannot be quantified in any form but can be exploited in ways where the number of casualties, and the amount of physical damage, may be far less important than the impact on public opinion, crowd behavior, and the political perceptions of foreign states. The very threat of such attacks can cause panic, and the risk of contamination can deny the use of a facility even if contamination is minimal or no longer exists. At the same time, a successful biological or nuclear attack on US territory might radically change world perceptions of American strength and vulnerability, even if the target was poorly chosen and casualties were limited.

This latter point is ignored in some studies. The fact that an attacker would be perceived in radically different terms if it successfully used a weapon of mass destruction against the US is viewed only as a deterrent to using such weapons. In fact, it is a two-edged sword. There is no
other way many attackers could change perceptions of their importance so quickly. Aum Shinrikyo is not memorable for the casualties it caused, but rather because it used chemical weapons and prepared biological weapons. Missiles were Iraq’s only memorable response during the Gulf War.
Table 4.1

Key Characteristics of Weapons of Mass Destruction - Part One

Chemical Weapons:

<table>
<thead>
<tr>
<th>Destructive Effects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisoning skin, lungs, nervous system, or blood. Contaminating areas, equipment, and protective gear for periods of hours to days. Forcing military units to don highly restrictive protection gear or use incapacitating antidotes. False alarms and panic. Misidentification of the agent, or confusion of chemical with biological agents (which may be mixed) leading to failure of defense measures. Military and popular panic and terror effects. Major medical burdens that may lead to mistreatment. Pressure to deploy high cost air and missile defenses. Paralysis or disruption of civil life and economic activity in threatened or attacked areas.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typical Targets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantry concentrations, air bases, ships, ports, staging areas, command centers, munitions depots, cities, key oil and electrical facilities, desalinization plants.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typical Missions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Killing military and civilian populations. Intimidation. Attack of civilian population or targets. Disruption of military operations by requiring protective measures or decontamination. Area or facility denial. Psychological warfare, production of panic, and terror.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limitations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Large amounts of agents are required to achieve high lethality, and military and economic effects are not sufficiently greater than careful target conventional strikes to offer major war fighting advantages. Most agents degrade quickly, and their effect is highly dependent on temperature and weather conditions, height of dissemination, terrain, and the character of built-up areas. Warning devices far more accurate and sensitive than for biological agents. Protective gear and equipment can greatly reduce effects, and sufficiently high numbers of rounds, sorties, and missiles are needed to ease the task of defense. Leave buildings and equipment reusable by the enemy, although persistent agents may require decontamination. Persistent agents may contaminate the ground the attacker wants to cross or occupy and force use of protective measures or decontamination.</td>
<td></td>
</tr>
</tbody>
</table>

Biological Weapons

<table>
<thead>
<tr>
<th>Destructive Effects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious disease or biochemical poisoning. Contaminating areas, equipment, and protective gear for periods of hours to weeks. Delayed effects and tailoring to produce incapacitation or killing, treatable or non-treatable agents, and be infectious on contact only or transmittable. Forcing military units to done highly restrictive protection gear or use incapacitating vaccines antidotes. False alarms and panic. High risk of at least initial misidentification of the agent, or confusion of chemical with biological agents (which may be mixed) leading to failure of defense measures. Military and popular panic and terror effects. Major medical burdens that may lead to mistreatment. Pressure to deploy high cost air and missile defenses. Paralysis or disruption of civil life and economic activity in threatened or attacked areas.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typical Targets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantry concentrations, air bases, ships, ports, staging areas, command centers, munitions depots, cities, key oil and electrical facilities, desalinization plants. Potentially fare more effective against military and civil area targets than chemical weapons.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typical Missions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Killing and incapacitation of military and civilian populations. Intimidation. Attack of civilian population or targets. Disruption of military operations by requiring protective measures or decontamination. Area or facility denial. Psychological warfare, production of panic, and terror.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limitations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Most wet agents degrade quickly, although spores, dry encapsulated agents, and some toxins are persistent. Effects usually take some time to develop (although not in the case of some toxins). Effects are unpredictable, and are even more dependent than chemical weapons on temperature and weather conditions, height of dissemination, terrain, and the character of built-up areas. Major risk of</td>
<td></td>
</tr>
</tbody>
</table>
contaminating the wrong area. Warning devices uncertain and may misidentify the agent. Protective gear and equipment can reduce effects. Leave buildings and equipment reusable by the enemy, although persistent agents may require decontamination. Persistent agents may contaminate the ground the attacker wants to cross or occupy and force use of protective measures or decontamination. More likely than chemical agents to cross the threshold where nuclear retaliation seems justified.
Table 4.1

Key Characteristics of Weapons of Mass Destruction -Part Two

<table>
<thead>
<tr>
<th>Nuclear Weapons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destructive Effects:</td>
</tr>
<tr>
<td>Typical Targets:</td>
</tr>
<tr>
<td>Typical Missions:</td>
</tr>
<tr>
<td>Limitations:</td>
</tr>
</tbody>
</table>

Table 4.2

The Comparative Effects of Biological, Chemical, and Nuclear Weapons Delivered Against a Typical Urban Target

Using missile warheads: Assumes one Scud-sized warhead with a maximum payload of 1,000 kilograms. The study assumes that the biological agent would not make maximum use of this payload capability because this is inefficient. It is unclear this is realistic.

<table>
<thead>
<tr>
<th></th>
<th>Area Covered in Square Kilometers</th>
<th>Deaths Assuming 3,000-10,000 people Per Square Kilometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarin Nerve Gas</td>
<td>0.22</td>
<td>60-200</td>
</tr>
<tr>
<td>Anthrax Spores</td>
<td>10</td>
<td>30,000-100,000</td>
</tr>
<tr>
<td>Biological:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthrax Spores</td>
<td>10</td>
<td>30,000-100,000</td>
</tr>
<tr>
<td>Nuclear:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 kiloton nuclear device</td>
<td>7.8</td>
<td>23,000-80,000</td>
</tr>
<tr>
<td>1 megaton hydrogen bomb</td>
<td>190</td>
<td>570,000-1,900,000</td>
</tr>
</tbody>
</table>

Using one aircraft delivering 1,000 kilograms of Sarin nerve gas or 100 kilograms of Anthrax spores: Assumes the aircraft flies in a straight line over the target at optimal altitude and dispensing the agent as an aerosol. The study assumes that the biological agent would not make maximum use of this payload capability because this is inefficient. It is unclear this is realistic.

<table>
<thead>
<tr>
<th></th>
<th>Area Covered in Square Kilometers</th>
<th>Deaths Assuming 3,000-10,000 people Per Square Kilometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear sunny day, light breeze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarin Nerve Gas</td>
<td>0.74</td>
<td>300-700</td>
</tr>
<tr>
<td>Anthrax Spores</td>
<td>46</td>
<td>130,000-460,000</td>
</tr>
<tr>
<td>Overcast day or night, moderate wind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarin Nerve Gas</td>
<td>0.8</td>
<td>400-800</td>
</tr>
<tr>
<td>Anthrax Spores</td>
<td>140</td>
<td>420,000-1,400,000</td>
</tr>
<tr>
<td>Clear calm night</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarin Nerve Gas</td>
<td>7.8</td>
<td>3,000-8,000</td>
</tr>
<tr>
<td>Anthrax Spores</td>
<td>300</td>
<td>1,000,000-3,000,000</td>
</tr>
</tbody>
</table>

Radiological Weapons as Means of Attack

Radiological weapons are generally felt to be suitable largely for terror, political, and area denial purposes, rather than mass killings. Unlike nuclear weapons, they spread radioactive material contaminating personnel, equipment, facilities, and terrain. The radioactive material acts as a toxic chemical to which exposure eventually proves harmful or fatal.

Radiation is energy that comes from a source and travels through some material or through space. Light, heat, and sound are types of radiation. Atom-derived radiation is called iodizing radiation because it can produce charged particles (ions) in matter. Ionizing radiation is produced by unstable atoms. Unstable atoms differ from stable atoms because they have an excess of energy or mass or both. Unstable atoms are said to be radioactive. To reach stability, these atoms give off, or emit, the excess energy or mass. These emissions are called radiation. The kinds of radiation are electromagnetic (like light) and particulate (i.e., mass given off with the energy of motion). Gamma radiation and X-rays are examples of electromagnetic radiation. Beta and alpha radiation are examples of particulate radiation. Ionizing radiation can also be produced by devices such as X-ray machines.

Three types of radiation-induced injury can occur: external irradiation, contamination with radioactive materials, and incorporation of radioactive material into body cells, tissues, or organs. External irradiation occurs when all or part of the body is exposed to penetrating radiation from an external source. During exposure, this radiation can be absorbed by the body or it can pass completely through. A similar thing occurs during an ordinary chest x-ray. Following external exposure, an individual is not radioactive and can be treated like any other patient. External radiation does not make a person radioactive. The second type of radiation injury involves contamination with radioactive materials. Contamination means that radioactive materials in the form of gases, liquids, or solids are released into the environment and contaminate people externally, internally, or both. An external surface of the body, such as the skin, can become contaminated, and, if radioactive materials get inside the body through the
lungs, gut, or wounds, the contaminant can become deposited internally. A person is externally contaminated if radioactive material is breathed in, swallowed, or absorbed through wounds. The environment is contaminated if radioactive material is spread about or uncontained. The third type of radiation injury that can occur is incorporation of radioactive material. Incorporation refers to the uptake of radioactive materials by body cells, tissues, and target organs such as bone, liver, thyroid, or kidney. In general, radioactive materials are distributed throughout the body based upon their chemical properties. Incorporation cannot occur unless contamination has occurred. The three types of exposure can happen in combination and can be complicated by physical injury or illness. In such a case, serious medical problems always have priority over concerns about radiation (such as radiation monitoring, contamination control, and decontamination).

Gamma radiation is able to travel many meters in air and many centimeters in human tissue. It readily permeates most materials and is sometimes called “penetrating radiation.” Gamma rays represent the major external hazard. Radioactive materials that emit gamma radiation and X-rays constitute both an external and internal hazards to humans. Dense materials are needed for shielding from gamma radiation. Clothing and turnout gear provide little shielding from penetrating radiation. Gamma radiation is detected with survey instruments, including civil defense instruments. Low levels can be measured with a standard Geiger counter (such as the CD V-700). High levels can be measured with an ionization chamber (such as a CD V-715). Gamma radiation frequently accompanies the emission of alpha and beta radiation. Instruments designed solely for alpha detection (such as an alpha scintillation counter) will not detect gamma radiation. Pocket chamber (pencils) dosimeters, film badges, thermoluminescent, and other types of dosimeters can be used to measure accumulated exposure to gamma radiation.

Beta radiation may travel meters in air and is moderately penetrating. It can penetrate human skin to the “germinal layer,” where new skin cells are produced. If beta-emitting contaminants are allowed to remain on the skin for a prolonged period of time, they may cause skin injury. Beta-emitting contaminants may be harmful if deposited internally. Most beta
emitters can be detected with a survey instrument (such as a CD V-700, provided the metal probe cover is open). Some, however, produce very low energy, poorly penetrating radiation that may be difficult or impossible to detect. Examples of this are carbon-14, tritium, and sulfur-35. Beta radiation cannot be detected with an ionization chamber (such as the CD V-715). Clothing and turnout gear provide some protection against most beta radiation. Turnout gear and dry clothing can keep beta emitters off of the skin.

Alpha radiation travels a very short distance through the air and is not able to penetrate the skin. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. A variety of instruments have been designed to measure alpha radiation. Special training in the use of these instruments, however, is essential for making accurate measurements. An ionization chamber (such as a CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation. Instruments cannot detect alpha radiation through even a thin layer of water, blood, dust, paper, or other material, because alpha radiation is not penetrating. Alpha radiation cannot penetrate turnout gear, clothing, or a cover on a probe. Turnout gear and clothing can keep alpha emitters off of the skin.

There are two types of radiological weapons. A **radiological dispersal device (RDD)** includes any explosive device utilized to spread radioactive material upon detonation. Any improvised explosive device could be used by placing it in close proximity to radioactive material. A **Simple RDD** spreads radiological material without the use of an explosive. Any nuclear material (including medical isotopes or waste) can be used in this manner.

The main potential sources of such weapons – barring covert transfer from outside the US – are hospital radiation therapy (Iodine-125, Coblat-60, Cesium-137), radiopharmaceuticals (Iodine-131, Iodine-123, Technetium-99, Thalium-201, Xenon-133), nuclear power plant fuel rods (Uranium-235), universities and laboratories and radiography and gauging (Cobalt-60, Cesium-137, Iridium-192, and Radium-226). Such materials can be delivered by a wide variety of means, including human agents, the destruction of a facility or vessel containing radioactive...
material, shipments or remote control devices that explode and disseminate the agent, placement in facilities or water supplies, or using aircraft, missiles, and rockets. Radiological dispersal weapons (RDWs) can also be used to contaminate livestock, fish, and food crops.

The effectiveness of such weapons is controversial, and the impact can vary sharply because of the time require to accumulate a disabling or significant does of radiation through ingestion, inhalation, or exposure. According to US military reporting on their effects, notes that, “There are no official casualty predictions for radiological dispersal weapons (RDWs). Because of the nature of the weapon, verification of the use of the weapon may prove difficult.”

Other findings of the Department of Defense provide important insights into the potential effectiveness of RDWs:

Such a weapon would not produce a nuclear yield; but would spread contamination. While such weapons would produce far less immediate damage than devices that result in nuclear detonations, radiological weapons have enormous potential for intimidation. Targeting a nuclear reactor in an antagonist’s territory to produce an accident releasing nuclear material would be another option.

There are hundreds of nuclear reactors and many more nuclear sources throughout the world, such as radiological materials used in hospitals. Both international and national measures control these items and associated materials and thereby contribute to proliferation prevention. However, post-war investigations in occupied Iraq showed that at least some of these control regimes could be circumvented, even by a state that was a nominal adherent to the Nuclear Non-Proliferation Treaty. Near-term concerns include the accumulation of large quantities of plutonium from reactors that is intended for reprocessing and/or storage, and the status of nuclear materials in the New Independent States that previously comprised the Soviet Union.

The Practical Chances of Using Radiological Weapons

A December 1999 report by the Advisory Panel to Assess Domestic Response Capabilities for Terrorism Involving Weapons of Mass Destruction drew the following conclusions about the ability of terrorist groups to use radiological weapons:

In the view of some authorities, theft of a nuclear device or building a weapon "in house" are the least-probable courses of action for a prospective nuclear terrorist. Far more likely—for all the reasons cited above—is the dispersal of radiological material in an effort to contaminate a target population or distinct geographical area.

The material could be spread by radiological dispersal devices (or RDDs)—i.e. "dirty bombs" designed to spread radioactive material through passive (aerosol) or active (explosive) means. Alternatively, the material could be used to contaminate food or water. This latter option is, however, considerably less likely
given the huge quantities of radioactive material that would be required. The fact that most radioactive material is not soluble in water means that its use by a terrorist would be unlikely and impractical, if the purpose is to contaminate reservoirs or other municipal water supplies, because the radioactive material will settle out or be trapped in filters. Those factors, coupled with the fact that any radioactive material will present safety risks to the terrorists themselves, collectively indicate the serious difficulties for any adversary attempting to store, handle, and disseminate it effectively.

Radiological weapons kill or injure by exposing people to radioactive materials, such as cesium-137, iridium-192, or cobalt-60. Victims are irradiated when they get close to or touch the material, inhale it, or ingest it. With high enough levels of exposure, the radiation can sicken and kill. Radiation (particularly gamma rays) damages cells in living tissue through ionization, destroying or altering some of the cell constituents essential to normal cell functions.

The effects of a given device will depend on whether the exposure is "acute" (i.e., brief, one time) or "chronic" (i.e., extended). There are a number of possible sources of material that could be used to fashion such a device, including nuclear waste stored at a power plant (even though such waste is not highly radioactive), or radiological medical isotopes found in many hospitals or research laboratories. Although spent fuel rods are sometimes mentioned as potential sources of radiological material, they are very hot, heavy, and difficult to handle, thus making them a poor choice for terrorists. Other sources, such as medical devices, might be much easier to steal and handle. These materials, however have a lower specific activity than the materials in reactor fuel rods (although large unshielded sources are quite dangerous). Presumably, terrorists could steal a device (either in transit or at the service facility or user location) and remove the radioactive materials.

Radioactive materials are often sintered in ceramic or metallic pellets. Terrorists could then crush the pellets into a powder and put the powder into an RDD. The RDD could then be placed in or near a target facility and detonated, spreading the radiological material through the force of the explosion and in the smoke of any resulting fires. Of course, the larger the radioactive material dispersal area, the smaller the resulting dose rate. Although incapable of causing tens of thousands of casualties, a radiological device, in addition to possibly killing or injuring any people who came into contact with it "could be used to render symbolic targets or significant areas and infrastructure uninhabitable and unusable without protective clothing."

A combination fertilizer truck bomb, if used together with radioactive material, for example, could not only have destroyed one of the New York World Trade Center's towers but might have rendered a considerable chunk of prime real estate in one of the world's financial nerve centers indefinitely unusable because of radioactive contamination. The disruption to commerce that could be caused, the attendant publicity, and the enhanced coercive power of terrorists armed with such "dirty" bombs (which, for the reasons cited above, are arguably more likely threats than terrorist use of an actual fissile nuclear device), is disquieting.

At the same time, a Department of Defense study notes that, “Iraqi and Russian separatists Chechnya have already demonstrated practical knowledge of RDWs. The availability of material to make RDWs will inevitably increase in the future as more countries pursue nuclear power (and weapons) programs and radioactive material becomes more available.”

The Practical Risks and Effects of Using Radiological
Weapons

There is no question that small amounts of radioactive materials can be used to attack, threaten, and contaminate, and that the risk of radiation poses a serious psychological problem. Covert attacks might produce slow radiation poisoning, and agents might be deliberately designed to make cost-effective decontamination difficult, time-consuming, or impossible.

The limited use of small amounts of radiological weapons present the problem that there are no reliable criteria for determining what dose is dangerous or lethal, particularly if effects like long-term increases in the cancer rate are included. Responders also differ sharply in terms of their use of sophisticated radiation detectors, and most responders are far more concerned with evacuation than the difficult problems of dealing with medical and decontamination aftereffects. In broad terms, however, these effects are somewhat similar to those of using a chemical weapon. They are not catastrophic, and even the contamination of most critical facilities could be dealt with – at the cost of interruptions in service and efficiency.

The large-scale weaponization of radiological materials presents a different issue. The above comments made some relatively casual assumptions about how easy or difficult it is to obtain and convert radioactive materials into a form that could be broadly disseminated over a wide area. These comments may be valid, but they also may not. There are significant disputes over how easy it is to grind up radioactive materials and spread them over an area larger than a single facility, and the unclassified literature seems to be based on generalizations rather than detailed technical analysis. This does not mean that such attacks are not possible, but it does mean that considerably more evidence is needed as to what can and cannot be done.

One possible option is a systematic attack on a nuclear power plant. This would require considerable expertise, access to the basic design of the plant and ideally to a full set of plans, and either an exceptionally efficient saboteur or a trained team. In most cases, it would require considerable time and effort to bypass safeguards and controls. The possible venting or overload of a reactor could then act as a radiological weapon, however, and cover hundreds of square...
kilometers as well as have a major potential affect on regional power supplies and some aspects of the US military nuclear program.

Alternatively, an attacker might seize significant amounts of radioactive material from spent fuel storage, or during the nuclear fuel cycle, which involves milling, conversion, enrichment, fuel fabrication, and disposal of waste – as well as reactor operations. A seizure of spent fuel would be particularly dangerous during the first 150 days after the downloading of the reactor because Iodine-131 and Iodine-123 are present, is extremely volatile, and affects the thyroid.

Work by the Department of Defense indicates that the following problems exist in trying to detect and estimate the impact of radiological weapons:

- The impact of prompt radiation is extremely difficult to estimate, and lethal and serious doses can vary sharply according to exposure even in the same areas. Even personnel equipped with dosimeters present major problems in triage because dosimeter readings cannot be used to judge whole body radiation, and a mix of physical symptoms have to be used to judge the seriousness of exposure. The impact of radiation poisoning also changes sharply if the body has experienced burns or physical trauma. In the case of treatable patients, significant medical treatment may be required for more than two months after exposure.

- Prompt detection and decontamination can have a major effect, and about 95% of external agents can be removed by simply removing outer clothing and shoes.

- The spread of airborne radioactive particulates can vary sharply according to the size and nature of a weapon and its placement, and in the size and lethality of particles and water vapor. While most will settle within 24 hours, this will vary according to wind pattern and movement through the affected area. The drop in actual radiation of the affected material is generally much slower, but logarithmic. Radiation at the first hour after the explosion is down about 90%, and radiation is only about one percent of the original level after two days. Radiation only drops to trace levels, however, after 300 hours.

- The test data on the longer-term (after 24 hours) effects of radiation are highly uncertain and the longer term impacts of radiation are so speculative as to be impossible to estimate. As a result, virtually all estimates of the impact of RDWs ignore the long-term casualties (96 hours to 70+ years) caused by radiation, such as cancer, and the impact of a weapon on the environment in terms of the poisoning of water and food supplies. The data on treatment of exposures from zero to 530 cGy of exposure do not even seem to call for recording the probable level of exposure.

- The problem is further complicated by trying to estimate the specific mix of radioisotopes and radionuclides that will be produced and then become induced in the soil. The hazard prediction models used by the Department of Defense are under review, and it is not clear when new models will be available.
There is often a gap between generic data on radiation and the assumed level of treatment required. Much of the federal, state, and local response literature effectively dodges around the issue of triage, and the problem of choosing who will receive limited medical treatment and how these victims will be selected in the case of large scale exposures. It does not describe what is done with the assumed dying and untreated, and some literature seems to assume that doses from zero to 70 cGy can be largely ignored, while other literature is more concerned with long-term effects. The broader issue of what indicators will be used for triage and deciding treatment and what treatment should actually be employed is generally not addressed because so many different RDWs and types of attack are possible.

The characterization of RDWs presents a significantly greater problem than does detection, and estimating the type and effects of a specific RDW is difficult. This is particularly true of contamination with RDWs or if detection only occurs after significant exposure. Because of the limitations of dosimeters and other detection equipment, bioassay is generally need to determine the level and type of effects. This is critical with inhalation and ingestion.

Post attack radiological surveys can be very difficult for the same reasons.

Corpse disposal may be a major problem as may disposal of dead animals and birds. This aspect of response seems to be largely ignored.

Even military medical handbooks fail to address the psychological impacts of prompt and longer-term effects.

Food and water contamination can be a problem, and add to the response burden in any major attack.

Furthermore, considerably more study is needed of the different kinds of agents that might be used, of their different effects and risks, of the problem of characterizing the weapon versus detecting radiation, and of how triage, monitoring, and treatment need to be applied. The same is true of decontamination. As is the case with chemical and biological weapons, there is also a need for far more analysis of what kind of detection grids or systems are needed, of what level of shielding or masking would be effective, and of how to predict dissemination and effects.

More broadly, responders correctly assume that destruction and lethality are key criteria, but the main purpose of such an attack might be political or psychological. As is the case with chemical and biological weapons, public and world perceptions of the impact of such attacks would initially be based on the fact they occurred at all. It is also far from clear how the public would react to even the most successful decontamination effort, and how well the US could guarantee the effectiveness of such a decontamination effort. Past incidents of nuclear smuggling and black market sales have also demonstrated that it is far easier to obtain some form of
radioactive material than fissile material.

Nuclear Weapons as Means of Attack

Nuclear radiation is the major effect that is unique to nuclear weapons. The other effects differ from conventional weapons only in degree. “About half of the energy produced in the detonation of a nuclear weapon results from nuclear fission, a process in which radioactive substances are produced. When detonations occur on or near the earth’s surface, the debris produced by the explosion becomes radioactive. Much of this debris is carried high into the atmosphere by the rising fireball. After the debris cools, it subsequently falls back to earth in the form of particles commonly called ‘fallout.’ The radiation emitted from these particles is called gamma radiation.” The health consequences of exposure to gamma radiation include radiation sickness and somatic effects. **Radiation sickness** is the immediate consequence of human exposure to gamma radiation. The effects may occur within hours of days following exposure. Depending on the amount and duration of exposure, health problems range from nausea, fatigue, vomiting, diarrhea, loss of hair, hemorrhages, infections, to death. **Somatic effects** are those radiation injuries that may occur months to years after exposure. They include sterility or reduced fertility, leukemia, and other forms of cancer.

There are three primary effects of nuclear detonation: thermal radiation, blast, and nuclear radiation. **Thermal radiation** refers to the heat and light resulting from the detonation. Thermal radiation can cause widespread injuries in the form of skin burns and retinal damage (“flashblindness”) as well as fires and damage. It can also destroy heat sensitive and optical systems. The type of weapon burst (air, surface, or sub-surface) and atmospheric conditions influence both the range and intensity of thermal damage. **Blast** refers to the shock waves, high overpressures, and severe winds that destroys or damages structures and other objects. The type of nuclear bursts determines the severity of destruction. Deaths and injuries result from people being thrown about or struck by the things that were turned into projectiles by the force of the wind associated with the explosion. Blast is not an instantaneous effect. A finite amount of time will elapse between the “flash” and the arrival of the shock wave relative to a person’s distance...
from the point of detonation. This time may allow individuals to find some protection, whether it be in a building, vehicle, or dropping to the ground if caught in the open. **Nuclear radiation**, the most widespread and longest lasting weapon effect, comes from the emission of radioactive products. These appear in two forms: initial and residual radiation. Initial radiation, emitted during the first minute after detonation, produces deadly gamma rays and neutrons. Residual radiation is most prevalent in ground burst where the detonation heaves up land, buildings, and other materials later dispersed as radioactive fallout. In the case of an airburst, residual radioactive emissions are extremely limited. **Electromagnetic Pulse (EMP)**, low-frequency electromagnetic waves, is a corollary effect that can break down electronic systems protection and disrupt communications. It is produced when the radiation energy generated by a high-altitude (60 miles and above) nuclear detonation interacts with the earth. When EMP interacts with the electric and electronic equipment components of radio and television systems, the resulting “energy surge” can cause severe damage. EMP is not a threat to most people, and only those of electrically driven life support systems (e.g., pacemaker) are at risk. There are a number of hardening techniques that can minimize the impact of EMP.

No one questions the dangers posed by a covert or terrorist attack using nuclear weapons. Table 4.9 shows a list of known nuclear powers that are not allies of the US, and several of which may become hostile in the future. A number of other countries are conducting nuclear weapons research efforts, have carried out enough nuclear research to deploy weapons relatively quickly, or could build a nuclear weapon if they could find a source of fissile material

The real question is whether any state actor would take the risk of conducting a covert or proxy attack or of aiding an extremist/terrorist group, and whether any extremist/terrorist group could acquire or make a weapon on its own. At present, these factors seem to limit the probability of a nuclear attack on the US. However, effective Homeland defense must deal with the risk of such attacks over at least a 25-year period, and the process of proliferation described earlier does not create high confidence that the US can count on future restraint. International peacetime restraint is also not a valid basis for estimating risk. Much of the risk stems from how
actors would behave in a contingency involving an extreme crisis in which past patterns of behavior could change quickly and with little warning.

Lethality and Effectiveness

There are many uncertainties associated with the employment of nuclear weapons in covert, proxy, or terrorist/extremist attacks on the US. There is no way to predict the yield or how successful given proliferants will be in implementing fusing, yield enhancement, delivery system accuracy, and other technologies. Many studies simply "assume a baseline case of a weapon using 1950s vintage U.S. technology – a simple fission weapon with a tens of kilotons yield that could be delivered by aircraft or tactical missiles. However, it is at least conceivable that a state might smuggle a thermonuclear weapon into the US or explode one off its coasts, and fission weapons can range in yield from less than a kiloton to 100 kilotons or even megatons.

A nuclear detonation releases vast amounts of energy that is manifested as blast effects. In the case of a small (10 KT) fission weapon, the blast is roughly 50 percent of the total energy, while the remainder is heat (35 percent) and nuclear radiation (15 percent). About 4 percent of this radiation is prompt ionizing radiation, and 10 percent is fallout. The Electromagnetic Pulse (EMP) accounts for the remaining one percent. Thermal energy becomes the dominant method of destruction in high yield weapons, however, such as thermonuclear or fusion weapons. The height-of-burst also has a critical impact on its effects. If the fireball does not touch the ground, there may not be militarily significant fallout. At higher altitudes, however, the Electromagnetic Pulse (EMP) from a nuclear weapon – a powerful radio wave – can damage electronic equipment at considerable distances.

These factors are of critical importance in estimating the lethality of a covert or terrorist nuclear attack because the explosion is likely to take place at ground-level or a relatively low altitude, which produces maximum fallout at the cost of diminished blast, thermal, and radiation effects. Most attacks are also likely to take place in cities, which would contain the radiation, blast, and thermal effects beyond the fireball, but ensure that a high population density was
affected by fallout. It is important to note that most nuclear effects research for war fighting purposes assumes that a weapon will be used at much higher altitudes to avoid fallout and not interfere with military operations, and assumes that the weapon will affect a relatively open space.

To put such yields into historical perspective, the weapon used at Hiroshima on August 6, 1945 had a nominal yield of 12 kilotons; the weapon used at Nagasaki on August 9, 1945 had a yield of 23 kilotons. The thermonuclear weapon the US tested at the Bikini Atoll in the spring of 1954 had a yield of 15 megatons, and the FSU tested a 50-megaton weapon in 1961. This latter test had a yield over 4,000 times larger than the yield of the weapon at Hiroshima.

Even a one-kiloton device, however, could have a massive impact, particularly because such devices are likely to be set off near ground level and be inefficient enough to increase the amount of direct fallout. An OTA study estimated that a one-kiloton terrorist device would still produce 5-psi overpressure out to 442 meters, and 600 rems of radiation out to 808 meters. (This compares with 4.4 miles for 5-psi for a one-megaton weapon and 600 rems to 2.7 kilometers.) It should be noted, however, that buildings normally cut these distances by about 25% in the case of blast and 75% in the case of direct radiation.

Table 4.10 and Chart 4.4 shows that yield can have a major impact on lethality, and that it is dangerous to assume that any response team will be able to characterize the impact of an explosion until it actually occurs. At the same time, Chart 4.5 warns that even a relatively lethal nuclear weapon would not necessarily be more lethal than even a relatively simple biological weapon.

Once again, the data on the lethality and the damage posed by such threats also suffers from major problems that could be of great importance in Homeland defense:

- There are no reliable models of nuclear weapons effects in major urban areas involving massive complexes of high rise steel and glass buildings. The containment effects of modern cities are extremely difficult to model. Military studies indicate, for example, that modern buildings can reduce the effect of blast, thermal, and radiation by 40-60%, but they do not specifically address modern heating and air conditioning systems, and the sheltering effects are not designed to take glass into
account and the internal impact on the building.26

- Nuclear explosions create a wide range of different effects that can interact on the human body. The recent literature on military models for predicting casualties indicates that such models are not reliable, and states that, “The US Army Office of the Surgeon General is developing a system of casualty estimation that will provide rapid and reasonably accurate estimates of the number of types of casualties produced by a given enemy nuclear attack.” This system, however, is not yet available. The military handbook on the subject acknowledges that medical facilities will probably be saturated or collapse in the event of a major attack, but effectively dodges the problem of diagnosis and triage, and assumes that adequate medical professionals and facilities are available to allow extended triage and preventive medical treatment.27 The Defense Threat Reduction Agency (DTRA) is working on more sophisticated models tailored to attacks on the US but it again is unclear when any unclassified results will be available.

- The impact of prompt radiation is extremely difficult to estimate, and lethal and serious doses can vary sharply according to exposure even in the same areas. Even personnel equipped with dosimeters present major problems in triage because dosimeter readings cannot be used to judge whole body radiation, and a mix of physical symptoms have to be used to judged the seriousness of exposure. The impact of radiation poisoning also changes sharply if the body has experienced burns or physical trauma in the case of treatable patients, significant medical treatment may be required for more than two months after exposure.

- Fallout can vary sharply according to the size and nature of a weapon and its placement, and in the size and lethality of particles and water vapor. While most fallout settles within 24 hours, this varies according to wind pattern and movement through the affected area. The drop in actual radiation of the affected material is much slower, but logarithmic. Radiation at the first hour after the explosion is down about 90%, and radiation is only about one percent of the original level after two days. Radiation only drops to trace levels, however, after 300 hours.28

- The test data on the longer-term (after 24 hours) effects of radiation are highly uncertain and the longer term impacts of radiation are so speculative as to be impossible to estimate. As a result, virtually all estimates of the impact of nuclear weapons ignore the long-term casualties (96 hours to 70+ years) caused by radiation, such as cancer, and the impact of a weapon on the environment in terms of the poisoning of water and food supplies. The data on treatment of exposures from zero to 530 cGy of exposure do not even seem to call for recording the probable level of exposure.29

- There is little data on the steadily growing seriousness of EMP on urban areas filled with computers and solid-state communications and control devices.30

- Most models of fallout assume relatively neat patterns of distribution or plumes that give state and local responders a relatively clear picture of probable lethality and casualty effects. It is uncertain how realistic these models really are. Weather patterns could produce far more erratic patterns of distribution, and some estimates indicate that the “worst case” area covered by the overall plume could easily be twice the area used as the reference case. There is little detailed or parametric modeling of these uncertainties, and of the burden they place on response teams. These uncertainties also are much greater for the much larger areas covered by low levels of radiation over time.

- The problem is further complicated by trying to estimate the specific mix of radioisotopes and radionuclides that will be produced and then become induced in the soil. The hazard prediction models used by the Department of Defense are under review, and it is not clear when new models will be
There is often a gap between generic data on radiation, burn, and physical effects and the assumed level of treatment required. Much of the federal, state, and local response literature effectively dodges around the issue of triage, and the problem of choosing who will receive limited medical treatment and how these victims will be selected. It does not describe what is done with the assumed dying and untreatable. The broader issue, however, is what indicators will be used for triage and deciding treatment and what treatment should actually be employed.

- Food and water contamination can be a serious problem, and add to the response burden in any major attack. Fallout presents special problems since sheltered civilians may not have access to safe water, and urban water systems may be affected.

- Corpse disposal may be a major problem as may disposal of dead animals and birds. This aspect of response seems to be largely ignored.

- Even military medical handbooks fail to address the psychological impacts of prompt and longer-term effects.
Is There a Threat from State Actors, Proxies, Terrorists, and Extremists? The Problem of Getting the Weapon

Two other key questions shaping the nuclear threat are (a) whether state actors can obtain such weapons and will take the risk of using them covertly or giving them to a proxy, and (b) whether terrorists can obtain such weapons or obtain the fissile material they need to make such weapons. The answers to these questions are heavily dependent on whether nuclear weapons become available from an existing nuclear weapons state, or a state or independent group can obtain fissile material.

The two forms of fissile material that are most attractive are weapons-grade material and weapons-usable material. **Weapons-grade material** is nuclear material considered most suitable for a nuclear weapon. It usually connotes uranium enriched to above 90 percent uranium-235 or plutonium with greater than 90 percent plutonium-230. **Weapons-usable material** is uranium enriched in isotope uranium-235 to greater than or equal to 20 percent of any isotope or mixture of isotopes of plutonium, except plutonium-238 in concentrations greater than 80 percent. Russia is the most likely, but not the only, source of weapons-usable fissile material. (Although Russia has denied that any weapons-grade material has gotten out of Russia, the evidence for sourcing to the former Soviet Union some weapons-usable samples recovered in Europe has included statements by traffickers, packaging and documentation with the materials, and some inferences from isotopic analysis of the samples.)

The basic design features and technology needed for nuclear weapons are well understood. Iran and North Korea are estimated to have nuclear weapons or to be able to acquire them in five years. The IAEA found in 1992 that Iraq had two fully functional implosion weapons designs, and the skills needed to make the timing devices, neutron initiators, and high explosive lenses for these weapons.

There are two primary ways of making a nuclear device. The first route is a gun-assembly
weapon – like the one used at Hiroshima that propels a subcritical mass of uranium-235 (U-235) into a second, also subcritical, mass of U-235, in order to produce the critical mass needed for a nuclear explosion. The second route is to make an implosion weapon like the one used at Nagasaki. In such a device, an outer shell of chemical high explosives surrounds a subcritical sphere of fissionable nuclear material, for example, plutonium-239 (Pu-239). Precise detonation of the "entire" sphere results in an implosion that produces a critical mass and the resulting nuclear explosion.

Unlike most means of attack, the two basic materials needed for any such weapon – U-235 and Pu-239 – are difficult to obtain. This is particularly true of the optimal weapons grade nuclear materials for a weapon, although mixed isotope plutonium (reactor grade material) can be used in nuclear weapons. The Department of Defense reports that such a device would be less efficient and might have a less predictable yield. However, a weapon using non weapons-grade plutonium was successfully detonated in a 1960s test.37

Production of fissile material is probably impossible for most terrorist and extremist movements. At present, Russia seems to be the only state that might lose control over weapons grade U-235 or P-239, although the US Department of Defense feels this risk is diminishing.38 Security of weapons-usable nuclear materials in Russia is another serious concern. While the Russian government is committed to nuclear security, continuing turmoil in society, corruption and resource shortages complicate this commitment. The combination of lax security for nuclear materials at some facilities, poor economic conditions and the growing power of organized crime in Russia mean that the potential for the theft and subsequent smuggling of these materials will continue to cause concern.

At the same time, the Russians have taken seriously the threat from a potential Chechen insurgent attack on a nuclear power facility and have made security upgrades. In the past, there have been incidents of weapons-usable materials being diverted from Russian nuclear facilities. The largest seizures of such materials out-side of the FSU occurred in 1994, where 2.7 kilograms of Highly Enriched Uranium (HEU) were found in the Czech Republic and about 360 grams of plutonium was seized in Germany. However, confirmed incidents of smuggling of weapons-usable nuclear materials, primarily plutonium and HEU, have declined but continued at a low rate. This decrease may be due to several factors: decreased smuggling through Western Europe, where detection is more likely; shifting of smuggling pathways through the southern tier of former Soviet states, where detection is highly unlikely; or improved security at Russian nuclear facilities Nevertheless, reports of theft of nuclear materials continue to emanate from the former Soviet block countries.

For example, in September 1999 one kilogram of reportedly uranium-235 (enrichment unconfirmed) was seized in the Republic of Georgia. In another recent case, 10 grams of weapons-grade HEU was confiscated.
in Bulgaria. In addition to reports of actual nuclear materials being offered for sale, there have been numerous accounts of radioactive isotopes such as californium-252, strontium-90, and cesium-137

However, in the longer term, the implementation of the U.S.-sponsored Material Protection, Control, and Accountability Program at Russian nuclear facilities likely will lead to a reduction of the number of incidents of diversion of weapons usable materials. HEU and plutonium are also being recovered from Russia’s ongoing warhead elimination effort, although a considerable degree of uncertainty remains about the overall security of Russia’s large inventory of nuclear material. Several programs are under way to alleviate the security problems for this material.

First, the U.S. DOE is assisting former Soviet states with physical security improvements at nuclear facilities in an effort to institute accurate accounting procedures for nuclear materials.

Second, pursuant to a Cooperative Threat Reduction (CTR) implementing agreement with the Russian Ministry of Atomic Energy, DoD is helping to build a state-of-the-art storage facility for long-term secure storage of HEU and plutonium from disassembled nuclear weapons. This facility is located at Mayak, about 1,400 kilometers east of Moscow near the Ural mountains. Third, the United States is purchasing 500 metric tons of HEU derived from disassembled Russian warheads. This material is being blended down in Russia into low-enriched uranium suitable for use in nuclear power reactors. Shipments to the United States began in 1993 and will continue over the next 20 years; as of mid-2000, about 100 tons of HEU had been transferred from Russia to the United States.

Finally, Russia has agreed to shut down its remaining plutonium-producing reactors. DoD is assisting the Russian Ministry of Atomic Energy pursuant to a CTR implementing agreement in the conversion of reactor cores so they will not produce weapons-grade plutonium. The weapons-grade plutonium produced since January 1997 will be placed under bilateral safeguards. Concern about security is not confined to nuclear items, but extends also to facilities in the FSU that house chemical or biological warfare-related materials. In addition, numerous scientists and technicians previously involved in key programs face severe salary reduction, complete loss of pay, unemployment. States, such as Iran, that are seeking to establish their own weapon capabilities may try to exploit the situation by attempting to recruit such individuals. However, Western programs, such as the International Science and Technology Center (ISTC), the U.S. Civilian Research and Development Foundation (CRDF), the Nuclear Cities Initiative (NCI), and the Initiatives for Proliferation Prevention (IPP) are expressly designed to address this “brain drain” problem.

These problems in obtaining fissile material led the Advisory Panel to Assess Domestic Response Capabilities for Terrorism Involving Weapons of Mass Destruction to draw relative optimistic conclusions about the ability of terrorist groups to use nuclear weapons:

Perhaps the only certain way for terrorists to achieve bona fide mass destruction would be to use a nuclear weapon. In this area, however, the challenges are arguably the most formidable. Although the collapse of the Soviet Union heightened Western fears about security at Russian military facilities, it appears that Russian strategic and tactical weapons are perhaps more secure than had been initially feared. Where there maybe particular concern, however, is during their transportation for maintenance or dismantling, when the Russian weapons apparently are not subject to the same strict security measures.

But even if terrorists were able to steal or acquire through black market purchase a stolen nuclear weapon, they would still face a number of significant obstacles in using or detonating it. Strategic nuclear warheads are immense and would be extremely difficult to move either easily or clandestinely.
Tactical nuclear weapons, such as artillery projectiles, admittedly, are far lighter and easier to conceal, making them potentially much more attractive items for terrorist theft or illicit acquisition. Moreover, many tactical nuclear weapons, and most strategic nuclear devices, are equipped with permissive action links (PALs) or other protective mechanisms designed to prevent accidental or unauthorized detonation.

In addition, some nuclear devices have tamper-proof seals that will disable the weapon if unauthorized personnel attempt to disassemble it. It would be extremely difficult, therefore, for terrorists to circumvent or overcome these built-in protective measures; some of the smaller tactical weapons (including the KGB’s alleged nuclear bombs concealed in small suitcases) admittedly may have had little or no protective devices or locks installed and, thus, the safety measures designed to thwart unauthorized detonation would be more easily overcome.

In the absence of assurance about the status and control of all Russian nuclear weapons, we must remain vigilant. Terrorists who were either unable or unwilling to steal a nuclear device or were unsuccessful in obtaining one on the putative black market that has surfaced in the countries of the former Soviet Union and Warsaw Pact, might attempt to build one.

Their first hurdle, however, would be in acquiring sensitive nuclear material (SNM), that is, either highly enriched uranium (HEU) or plutonium (Pu) suitable for fashioning a nuclear device. Mining and processing uranium or building a reactor to create plutonium would of course be impractical (although, it should be noted, Aum’s most grandiose aims embraced this possibility); terrorists would, therefore, have to steal SNM or conceivably purchase it on the black market. A number of authorities in recent years repeatedly have expressed concern about illicit access to nuclear materials and technology, particularly in the former Soviet Union. Minatom, the Russian entity with responsibility for nuclear weapons, has itself complained about a lack of qualified personnel and adequate control systems, and the security at HEU storage facilities has also been reported to be grossly inadequate.

Given this apparent lack of security, and the fact that 250 tons of HEU and 50 tons of weapons-grade plutonium has been stockpiled in Russia, the risk of illicit acquisition from SNM storage facilities should be considered a serious threat. Potentially less worrying, however, is the supposed "black market" for these substances. Between 1992 and 1996, more than 1,000 claims were made involving the illicit sale and smuggling of nuclear material; however, only six instances were substantiated, and none of those involved the quantities needed to construct an effective "homemade" device that could cause mass casualties-thereby suggesting that the black market, if it exists at all, is limited in size and grossly exaggerated in impact.

...To be sure, small amounts of SNM have been diverted illegally, apparently from Russian facilities. It is worth noting, however, that all of the SNM stolen to date is not sufficient to make a single nuclear device and that reported thefts of weapons grade material have dropped in recent years. Ongoing improvements in Russian nuclear security procedures should further reduce the incidents of theft.

Building a nuclear device capable of producing mass destruction presents Herculean challenges for terrorists and indeed even for states with well-funded and sophisticated programs. According to one analysis, minimum requirements include "personnel, skills, information, money, facilities, equipment, supplies, security, special nuclear materials…and, usually, other specialized and hard-to-obtain material."

According to another assessment, a successful program hinges on obtaining enough fissile material to form a super-critical mass for each of its nuclear weapons (thus permitting a chain reaction); arriving at weapon design that will bring that mass together in a tiny fraction of a second, before the heat from early fission blows the material apart; and designing a working device small and light enough to be carried by a given delivery vehicle. It is important to emphasize that the above represents the minimum requirements. If each one is not met, concludes the assessment, "one ends up not with a less powerful weapon, but with a device..."
that cannot produce any significant nuclear yield at all or cannot be delivered to a given target."

That being said, it is clear that certain types of nuclear devices are easier to create than others. Two types of weapons systems, for example, can create nuclear fission: the implosion device and the "gun" type. In the former, explosives compress a sphere of HEU or plutonium into a small ball, thus achieving supercriticality and a nuclear chain reaction. Even the simplest implosion weapon, however, requires the fabrication of complex components, such as high-explosive lenses, high-performance detonation systems, and fusing and firing circuitry.

The gun-type device, on the other hand, employs HEU exclusively. Using a high explosive, the system fires a subcritical HEU projectile into a subcritical cylinder of HEU to form a solid mass of critical material. Although it uses relatively scarce HEU, the gun-type device is considered technically easier to fabricate; and many analysts accordingly argue that terrorists attempting to make a bomb "in house" will build a gun-type device.

There is disagreement, however, about what level of expertise and other resources are required to construct such a weapon. According to one authority, "most states and some exceptionally capable non-state actors" could build a highly destructive 10-kiloton weapon in several months at a cost of a few hundred thousand dollars- assuming they had access to sufficient quantities of fissile material.

Other experts, however, are far more skeptical in their estimates of the capabilities required. Although much of the information about nuclear weapons design and production has become public knowledge during the past 50 years, it is still extraordinary for non-state entities to attempt to embark on a nuclear weapons R&D program.

Indeed, even technical requisite knowledge and hands-on experience are not enough to build an effective nuclear weapon. As an Office of Technology Assessment report explains, "[k]nowledge must be supplemented by industrial infrastructure and the resources to carry a nuclear weapon program to completion. The technologies for building cars and propeller-driven airplanes date back to early in this century, but many countries still cannot build them indigenously."

Moreover, the fact that a number of states-despite aid from other nuclear powers, their own intense motivations, the provision of considerable resources, alongside concerted espionage activities designed to support their R&D programs-still struggle to build a nuclear weapon capability, suggests that the technical challenges remain immense.

In the case of South Africa, for example, it took scientists and engineers-who were endowed with a large and sophisticated infrastructure-four years to build their first gun-type system. Nevertheless, any nuclear weapons program will inevitably involve a number of people, and significant resources, equipment, and facilities. As noted earlier, all of that activity inevitably will materially increase the risk of exposure of the terrorist group to detection by intelligence and law enforcement agencies.

Such comments, however, again assume that a state does not use a nuclear weapon in an asymmetric attack, provide a nuclear device to a terrorist movement, or offer a sanctuary and fissile material. The unclassified literature on weapons design also leads many analysts to grossly exaggerate the amount of fissile material involved, since such sources are generally hopelessly out of date and can sometimes indicate that 50% to 200% more fissile material is required than is
needed in a modern weapon of advanced design. These risks led the National Commission on to draw different conclusions about the risks a state might provide independent groups with nuclear material:

Terrorists could acquire more deadly CBRN capabilities from a state. Five of the seven nations the United States identifies as state sponsors of terrorism have programs to develop weapons of mass destruction. A state that knowingly provides agents of mass destruction or technology to a terrorist group should worry about losing control of the terrorists' activities and, if the weapons could be traced back to that state, the near certainty of massive retaliation. However, it is always difficult and sometimes dangerous to attempt to predict the actions of a state. Moreover, a state in chaos, or elements within such a state, might run these risks, especially if the United States were engaged in military conflict with that state or if the United States were distracted by a major conflict in another area of the world.

The Commission was particularly concerned about the persistent lack of adequate security and safeguards for the nuclear material in the former Soviet Union (FSU). A Center for Strategic International Studies panel chaired by former Senator Sam Nunn concluded that, despite a decade of effort, the risk of "loose nukes" is greater than ever. Another ominous warning was given in 1995 when Chechen rebels, many of whom fight side-by-side with Islamic terrorists from bin Ladin's camps sympathetic to the Chechen cause, placed radioactive material in a Moscow park.

US intelligence experts have become increasingly concerned that Pakistan may develop surplus fissile material production capacity over the next few years. At least some analysts have also raised the issue of whether a China that became hostile might sell fissile material in the future. An number of experts on proliferation also question why any state that does contemplate a nuclear attack on the US would risk the use of an easily attributable ballistic missile attack, rather than use of a far less attributable covert or proxy attack. The perceived risk of fissile transfers or nuclear weapons use may also change over time. If nuclear weapons and highly lethal biological weapons are used against targets elsewhere in the world, the end result might well be to make the nuclear threat to the US far more “thinkable.”

The Problem of Delivery

Nuclear weapons are large and potentially detectable. This is particularly true of large boosted or thermonuclear weapons that states might use to launch a catastrophic attack on the US, and of the kind of relatively crude or implosion device that an extremist or foreign terrorist might be able to build. Most primitive gun devices would, for example, be at least 2-2 1/2 meters long and weigh well over 1,000 pounds.
A crude implosion device might be more compact, but would still be very heavy. At the same time, the FSU seems to have built small nuclear weapons weighing less than 200 pounds, somewhat similar to the atomic demolition munitions the US withdrew from service years ago. The advanced thermonuclear devices it uses on its MIRV’d missiles are relatively compact and weigh well under 1,000 pounds. As is the case with yield, there are no rules regarding the size and weight of a nuclear device, particularly if one can be acquired or stolen from a nuclear power. It is also possible that the fissile core of a weapon could be delivered in separate component form, and then matched with the rest of the weapon. This would sharply reduce the size and detectability of even a crude basic weapon.

Radiation would present a detectability problem, as it would for radiological weapons. Nuclear devices can, however, be shielded and the core of a weapon might be smuggled into the US in many different ways. Thousands of large containers enter US ports every day, and less than 3% are searched or inspected. The northern and southern borders are porous enough so that some drug smugglers do no even bother to carefully conceal the drugs they are smuggling, and a device might be routed through a relatively open border for small craft like Alaska or Hawaii.

Several attack models also involve rigging weapons to go off if the storage device is opened, it is scanned in certain ways, or even if a GPS unit indicates it is in a US port and approaching customs. Unless excellent human intelligence is available to the US, unmanned delivery would offer a relatively high assurance of success and a self-destruct device would reduce the risk of attribution – particularly in a broad crisis. Detonation on detection, scan, or entry into a port area before customs is now sufficiently low tech so that it can be used by a wide range of potential attackers.

Dealing with the Risk and Impact of Nuclear Attacks

There is no present way to predict whether a state actor, proxy, or terrorist/extremist will (a) be willing to take the risk of launching a nuclear attack on the US over the coming decades, or (b) be able to acquire a weapon or device. Like the more lethal forms of biological weapons,
the use of nuclear weapons would almost certainly lead to massive US retaliation if the US could identify the attacker, and would pose a high level of risk.

At the same time, this judgment assumes that the attacker is deterrable. This is not necessarily true of a regime under extremis that acts because it feels it has no other choice, or which is certain it will fall in any case. It is not true of a proxy, terrorist, or extremist that is willing to accept destruction or martyrdom to achieve a goal. It is not true of a state or terrorist that assumes – rightly or wrongly – that an attack cannot be attributed or will be ambiguous enough so that it can escape dramatic punishment. It is also at least possible that such an attack could occur as the result of escalation to the use of weapons of mass destruction in another theater in which the US is deeply involved – such as Korea, the Taiwan Straits, Israel, etc.

The problem with such risk assessments – and with similar risk assessments affecting chemical and biological weapons – is that history is often shaped by extreme events that occur without warning and which are only explainable long after the event. History is also filled with examples in which escalation was not gradual or "rational," in which the weaker side acted in unpredictable ways. No one looking at the history of the 20th Century has any reason to assume that sudden catastrophic events will not occur in the 21st Century. At the same time, no one can assume that because such events can occur, they will occur. There simply is no clear nexus of probabilities to act upon.

Problems in Responding to a Nuclear Attack

There are also problems in the way defenders and responders currently deal with nuclear weapons:

- Far too much current response planning seems to treat nuclear weapons the way that it treats attacks using highly sophisticated biological weapons. It treats them as sufficiently improbable so that it is tacitly assumed that legal procedures and civil rights issues can be treated in the same way as much more moderate and limited attacks using explosives, chemical weapons, and unsophisticated biological weapons. There is no true sense of emergency. It is tacitly assumed that a state of true emergency would follow the use of a nuclear weapon, not come from convincing evidence of a serious risk such an attack is planned or underway.
• The focus on terrorist weapons leads to a lack of concern over efforts to determine the type and size of a weapon in the attackers hands, and providing both defenders and responders with as clear a set of warning signals as possible. If a state is involved, the prospect of a boosted or thermonuclear weapon being available may grow steadily over time, and there is no guarantee that the loss or sale of an FSU weapon would involve a small or limited yield. Just as all weapons of mass destruction are not the same, all nuclear weapons are not the same and intelligence and defense must give early characterization high priority.

• Responders are well aware that even a relatively small nuclear event would saturate, if not destroy, their capabilities. As a result, most local and state responders concentrate on planning for events they can manage and making limited preparations to deal with nuclear effects on an ad hoc basis. This seems perfectly realistic given current resources. There is, however, a basic policy issue that needs to be addressed: What – if anything – can be done cost-effectively to provide serious response capability to a nuclear attack beyond regional improvisation and limited federal aid?

• Many models and simulations, including those publicly briefed by DTRA, assume relatively simplistic blast, thermal, immediate radiation, and plume/fallout models. Work is underway to model urban effects more realistically, and to develop workable real-time monitoring and detection grids that can characterize and predict fallout and plume effects. It is not clear, however, what systems are practical, and serious problems seem to exist in determining the threshold of radiation to be used for warning and response, and the level of accuracy needed when radiation is deposited in very different levels over a given region. The present models seem to present a serious risk of misleading responders and to have uncertainties in affected area coverage with factors of at least 2-3. There is a possible need for zero-based parametric modeling.

• Like mass biological incidents, no one really seems to want to confront the issue of triage, and of deciding who gets treatment, who is left at risk, and who dies. This simply is not a realistic approach. Triage cannot be improvised by practitioners without a major risk of wasting inadequate resources on the moving dead and leaving the curable untreated. Creating systems to decide what level of risk is involved in urging people to stay put or evacuate, how to control the media, and what level of detail to provide should not be left up to responders in a crisis. Such planning can only be done at a federal level, but it is uncertain that the leadership and moral courage is present to do it.

• Responders correctly focus on immediate effects. Serious questions do arise, however, as to dealing with lower levels of radiation that affect the mid to long-term death rate, but which may or may not merit immediate response and treatment. This issue was ignored in civil defense planning during the Cold War because there was no way to deal with it in a mass attack upon the US. It cannot be ignored in a limited attack. As Hiroshima and Nagasaki showed, the physical and psychological impacts can last more than half a century, and there is a serious risk of “syndromes” where the exposed and non-exposed alike become major problems.

• Decontamination and recovery planning and options seem to be far too ad hoc. It is unclear what level of pre-event capability is cost-effective, but this should not be left up to change.

Once again, it is also important to note that the psychological and political impact of any nuclear explosion would be vast, regardless of the damage it inflicted. As a result, even an explosion at sea or in the air outside US territory would, under some scenarios, be a victory for an attacker. Any strike on US territory would be even more of a victory, and in many US ports,
an explosion at sea-level would deposit immense amounts of slightly radioactive water or "rain out" over a wide area, plus do major direct damage to an American city. Like some biological weapons, nuclear weapons are also "stand-off" weapons. They do not need to be near the target to do major damage. In fact, offsetting a weapon upwind from a city or facility and setting it off at ground level would produce massive fallout problems over a wide area.

Despite these constraints, the US government has made significant progress in addressing nuclear mischief. Of specific note is the substantial capability residing within the Department of Energy (DOE) and the nuclear weapons complex. To some extent, DOE’s array of response assets and programs could serve as a model for WMD response. Though not without problems, DOE’s more than two-decade-long experience in managing nuclear emergencies is the “keystone” in designing approaches for dealing with radiological and nuclear weapons related malevolence. DOE’s accomplishments derive from a competency base of preeminent scientists, engineers, and technicians, a sophisticated labyrinth of national laboratories, and 50-plus years of uninterrupted management of the US nuclear weapons program. DOE’s terrorism response roles include crisis response, consequence management, support to the Federal Response Plan, and out-reach to state and local responders. It’s response assets – an integrated mix of infrastructure, technology, and operational capabilities – are ready to respond to any type of radiological accident or incident worldwide, including initial notification, monitoring and assessment of the situation, and working with other agencies to resolve the emergency.

DOE’s deployable assets provide a full range of specialized capabilities and equipment that contribute to a comprehensive mutually supportive emergency mission. These include the Accident Response Group (ARG) and the Nuclear Emergency Search Team (NEST), the Aerial Measuring Systems (AMS), the Atmospheric Release Advisory Capability (ARAC), the Federal Radiological Monitoring and Assessment Center (FREMAC), the Radiological Assistance Program (RAP), and the Radiation Emergency Assistance Center/Training Site (REAC/TS). The mainstays of the program are the ARG and NEST.

ARG is comprised of scientists, engineers, and technicians from the national laboratories,
e.g., Los Alamos, Lawrence Livermore, and Sandia. ARG’s mission is to manage the resolution of accidents or significant incidents involving nuclear weapons in DOE’s custody and provide timely worldwide support to DoD in resolving accidents or significant incidents involving nuclear weapons in DoD’s custody. Through years of experience, DOE and DoD have developed a system to support one another during emergencies. ARG’s team, which possesses 30 different areas of technical expertise, is ready to respond within two-hours of notification with highly specialized, state-of-the-art equipment for monitoring, assessing or removing nuclear weapons, components, or debris, evaluating the health and safety of response personnel, and conducting independent safety reviews during recovery operations.

NEST is responsible for preparing and equipping specialized response teams to deal with the technical aspects of nuclear or radiological terrorism. NEST capabilities include search and identification of nuclear materials, diagnostics and assessment of suspected nuclear devices, technical operations in support of render-safe procedures, and packaging for transport to final disposition. Response teams vary in size from a five-person technical advisory team to a tailored deployment of dozens of searchers and scientists who can locate and then conduct or support technical operations of a suspected nuclear device. NEST personnel and equipment are ready to deploy worldwide at all times. NEST search components, the Search Response Team and Search Augmentation Team deploy with advanced handheald and vehicle-mounted radiological sensors that can conduct covert searches. NEST Joint Technical Operations Team components support DoD and FBI explosive ordnance disposal personnel in rendering safe and nuclear or radiological weapon. The NEST Nuclear/Radiological Advisory Team is the command and control element that supervises the actions of all DOE personnel while deployed. The senior official on this deployable team answers to both the DOE and the designated lead federal agency for the crisis.

AMS is a sophisticated aggregate of state-of-the-art remote sensing and specially equipped non-military aircraft used to perform aerial surveys. It detects, measures, and tracks radioactive material at an emergency to determine contamination levels. ARAC is a computer-
based emergency preparedness and response radioactivity predictive capability. It develops predictive plots generated by sophisticated computer models. FREMAC coordinates federal joint and interagency radiological monitoring and assessment activities with those of state and local agencies. RAP provides nationwide radiological assistance to federal, state, and local government agencies. It is usually the first DOE responder for assessing the emergency situation and deciding what further steps should be taken to minimize the hazards of a radiological emergency. REAC/TS provides treatment and medical consultation for injuries resulting from radiation exposure and contamination as well as serving as a medical and health physics training facility.

In addition to its own response capabilities, DOE also maintains a number of other key programs. These include a technology development effort that provides a source for accessing and leveraging DOE’s national laboratory resources and produces unique technical devices for use by law enforcement, customs, and others. An example of these is a radiation pager used successfully in the detection of 10 containers of highly radioactive material in 2000 by Uzbekistan customs officials. DOE also conducts annual training exercises with agencies to ensure adequate support for first responders are in place, table-top exercise (e.g., “Silent Thunder”) to familiarize federal, state, and local senior management personnel, and a variety of other out-reach activities. For example, DOE uses REAC/TS expertise to provide instruction to first responders and emergency medical community’ as of the spring of 2001, some 28,500 state and local first responders had been trained. In the recently updated (May 2001) terrorism chapter of FEMA’s Guide for All-Hazard Emergency Operations Planning: State and Local Guide (101), “DOE serves as a ‘one-stop shopping’ point of information and referral for WMD-related nuclear and radiological preparedness issues and questions from stakeholders, states, and local jurisdictions.”

Once again, it is important to note that the psychological and political impact of any nuclear explosion would be vast, regardless of the damage it inflicted. As a result, even an successful explosion at sea or in the air near US territory would, under some scenarios, be a
victory for an attacker. Any strike on US territory would be even more of such a victory, and in many US ports, an explosion at sea-level would deposit immense amounts of slightly radioactive water or "rain out" over a wide area, plus do major direct damage to an American city. Like some biological weapons, nuclear weapons are also "stand-off” weapons. They do not need to be near the target to do major damage. In fact, offsetting a weapon upwind from a city or facility and setting it off at ground level would produce massive fallout problems over a wide area. This, however, greatly increases the detection and intercept area and the potential problems in carrying out and coordinating detection and defense activities.

Cost-Effectiveness of Real-World Options

It is not clear that federal, state, and local defense and response efforts are seriously concerned with developing new options for improving US defense and response capabilities to nuclear attacks. There well-organized federal teams designed to help track down a nuclear weapon and disarm it, and there are DOE and DTRA models of nuclear attacks that can help responders to train and predict some of the effects of a nuclear attack. The existing federal effort is discussed in depth in the following sections of this analysis, but nuclear attacks seem to be treated as “worst cases” that generally receive less attention than biological attacks.

At the same time, it is clear that many of the options and issues affecting Homeland defense against nuclear attacks are very similar to those for major biological attacks:

- The role of intelligence in defense and response needs to be addressed to determine the probable ability to detect the development of specific types and yields of nuclear weapons and the nature of the delivery systems. The need to communicate warning to responders and treatment facilities as well as defenders needs to be addressed.

- Zero-based investigation is needed of the probable effects and lethality of nuclear weapons in urban environments, including longer-terms effects and low levels of radiation.

- As part of this effort, the need to be able to model and predict the effect of the atmospheric boundary level, and estimate the combined impact of air movements, temperature, and day-night conditions in an urbanized environment is critical to predicting effects and the capability for detection. The need for models capable of reflecting local wind and weather conditions, and water flows is equally important. Nominal models of plumes and weather effects are now so uncertain that they may do more harm than good in providing guidance for detection and response.
• Specialized intelligence and defense capabilities must be developed for warning, detection, characterization, and defense. This is not only a task for the national intelligence, security, and law-enforcement community, but also for federal, state, and local law enforcement and state National Guard units. The problem of finding cost-effective mixes of specialized CBRN expertise, and linking these efforts to response activities will present a constant challenge in terms of law, resources, organization, and training.

• As part of the development of intelligence, defense, and response capabilities, explicit analysis is needed of the trade-offs between the risk posed by mass attack and the separation of foreign intelligence from law enforcement, and the priority given to prosecution versus defense. The scale of the treat and the needed response times call for almost total integration of the intelligence, defense, and response effort, but this now presents major legal and organizational problems.

• The ability to convincingly identify attackers needs to be determined, as well as the possible timelines, as part of an effort to create a credible threat of retaliation and punishment at the military and law-enforcement levels.

• Zero-based investigation is needed of how to link the detection and characterization of each major form of nuclear weapons effect to a system capable of measuring the scale and lethality of attacks. Efforts to develop advanced real time detectors need to be tied to a clear plan for deployment as a system – including fixed versus mobile sensor arrays and the possible use of municipal vehicles as sensor platforms. This should include the ability to provide the data needed to identify the need for containment, isolation, treatment, disposal, and decontamination. This examination must address fundamental cost-effectiveness issues as to whether systems can or should be deployed without strategic and tactical warning, and can be rapidly deployed.

• The problem of providing integrated detection and characterization of all forms of nuclear weapons effects must be addressed at the same time, along with its cost-effectiveness. The limits of such systems, their level of accuracy and error, and their ability to reliably address the scale and area of coverage of attacks must be addressed.

• The potential role of any such a detection and characterization system must be examined in a broader context. Methods of transmitting data to defenders, responders, and caregivers – including hospitals and public health facilities need to be identified. As part of such systems, a clear linkage needs to be established between local detection and characterization and communication of the results to state, regional, and federal authorities. Methods need to be developed to use the results to immediately alert caregivers and local, state, and federal authorities to assemble the necessary containment and treatment resources. Contingency plans need to be developed to use the media to alert those in and near the affected area as to what to do in the presence of a given levels of fallout and radiation.

• Current efforts to develop detectors need to be recalibrated to consider the problems of telemetry, and triage, particularly triage involving the intensive treatment resources needed for burns and radiation.

• The cost-effectiveness of enhancing local public health capability needs examination as does the overall cost-effectiveness of developing suitable response local government systems. It is easy to call for federal support, and HHS/FEMA training and aid efforts. The tangible benefits per dollar in terms of lasting capabilities to deal with attacks are far from clear.

• Adding courses on radiation treatment to current medical and post-graduate training may be cost-effective.
The hospital seems to be the current weak link in most serious attacks. The cost-effectiveness of federal programs, regulations, and tax credits in creating hospitals with improved treatment capabilities needs serious examination. At present, far too much of the defense/response effort would simply end in overloading existing medical treatment facilities.

Efforts are already underway to create specialized National Guard and reserve CBRN defense units. The capability to contain, isolate, perform triage, and treat seems to be the critical current weak link in such efforts, and is compounded by the lack of well-funded public-health programs capable of organizing and training reserves of local caregivers.

Civil defense options need to be reexamined in terms of building design and modification, personal defense equipment, and possible home protection and care options. These need to be examined in terms of their real world cost-effectiveness, and value in dealing with the full spectrum of CBRN attacks.

A comprehensive plan is needed for dealing with local, state, and national media. This must involve education efforts, voluntary agreement to provide coverage that will inform without creating panic or misinformation, and some effort to provide clearly official coverage that viewers and listeners will trust. Consideration is needed of bringing back some form of authorized civil defense network in the effect of large-scale nuclear and biological attacks.

Much of the current planning effort sees one major attack with one agent used in a form that federal, state, and local authorities clearly detect and characterize as the “worst case.” Defense and response needs to examine cases involving multiple attacks, deception and false alarms, false characterization, and late detection. The problem of dealing with contagious disease outbreaks that are only detected after they have reached at least scatter regional or national levels is particularly important.

The nation needs to be prepared for the “morning after.” A clear plan is needed for Presidential response and national leadership in the event of a successful attack, and to prepare the American people for both follow-on attacks and the need for a US response.

The issue of retaliation and counter-offensive options in the event of foreign attacks must be transformed into credible options that can be communicated in ways that reassure our allies, create a clear context for American counter-attacks that the world will understand, and which deter attackers.

The problem with this list is the same as is the case for major biological attacks, particularly when considered in the light of the need for federal response to existing public health care and entitlements needs, the existence of the full spectrum of CBRN attacks, the addition risks posed by missile and critical infrastructure attacks, and existing national security requirements. The checklist of necessary options is very long, the short-term risks are low, the effectiveness of most options is uncertain, and the cumulative cost is high. Furthermore, it is not possible to prioritize defense and response at this point in time, and the effectiveness of any program may be determined by its weakest and/or most expensive link. Anyone can call for
action. Developing an affordable and well-justified program is an entirely different matter.

Rethinking the Unthinkable About Nuclear Attacks on the US Homeland

Given this background, it is clear that the US needs to make far better efforts to address the problem of responding to nuclear attacks in a number of key areas

- There are no reliable models of nuclear weapons effects in major urban areas involving massive complexes of high rise steel and glass buildings. The containment effects of modern cities are extremely difficult to model. Military studies indicate, for example, that modern buildings can reduce the effect of blast, thermal, and radiation by 40-60%, but they do not specifically address modern heating and air conditioning systems, and the sheltering effects are not designed to take glass into account and the internal impact on the building.\[43\]

- Nuclear explosions create a wide range of different effects that can interact on the human body. The recent literature on military models for predicting casualties indicates that such models are not reliable, and states that, "The US Army Office of the Surgeon General is developing a system of casualty estimation that will provide rapid and reasonably accurate estimates of the number of types of casualties produced by a given enemy nuclear attack.” This system, however, is not yet available.\[44\] The military handbook on the subject acknowledges that medical facilities will probably be saturated or collapse in the event of a major attack, but effectively dodges the problem of diagnosis and triage, and assumes that adequate medical professionals and facilities are available to allow extended triage and preventive medical treatment.\[45\] The Defense Threat Reduction Agency (DTRA) is working on more sophisticated models tailored to attacks on the US but it again is unclear when any unclassified results will be available.

- The impact of prompt radiation is extremely difficult to estimate, and lethal and serious does can vary sharply according to exposure even in the same areas. Even personnel equipped with dosimeters present major problems in triage because dosimeter readings cannot be used to judge whole body radiation, and a mix of physical symptoms have to be used to judged the seriousness of exposure. The impact of radiation poisoning also changes sharply if the body has experienced burns or physical trauma.\[46\] In the case of treatable patients, significant medical treatment may be required for more than two months after exposure.

- Fall out can very sharply according to the size and nature of a weapon and its placement, and in the size and lethality of particles and water vapor. While most fall out settles within 24 hours, this varies according to wind pattern and movement through the affected area. The drop in actual radiation of the affected material is much slower, but logarithmic. Radiation at the first hour after the explosion is down about 90%, and radiation is only about one percent of the original level after two days. Radiation only drops to trace levels, however, after 300 hours.\[47\]

- The test data on the longer-term (after 24 hours) effects of radiation are highly uncertain and the longer term impacts of radiation are so speculative as to be impossible to estimate. As a result, virtually all estimates of the impact of nuclear weapons ignore the long-term casualties (96 hours to 70+ years) caused by radiation, such as cancer, and the impact of a weapon on the environment in terms of the poisoning of water and food supplies. The data on treatment of exposures from zero to 530 cGy of exposure do not even seem to call for recording the probable level of exposure.\[48\]

- There is little data on the steadily growing seriousness of EMP on urban areas filled with computers and solid-state communications and control devices.\[49\]
Most models of fall out assume relatively neat patterns of distribution or plumes that give state and local responders a relatively clear picture of probable lethality and casualty effects. It is uncertain how realistic these models really are. Weather patterns could produce far more erratic patterns of distribution, and some estimates indicate that the “worst case” area covered by the overall plume could easily be twice the area used as the reference case. There is little detailed or parametric modeling of these uncertainties, and of the burden they place on response teams. These uncertainties also are much greater for the much larger areas covered by low levels of radiation over time.

The problem is further complicated by trying to estimate the specific mix of radioisotopes and radionuclides that will be produced and then become induced in the soil. The hazard prediction models used by the Department of Defense are under review, and it is not clear when new models will be available.

There is often a gap between generic data on radiation, burn, and physical effects and the assumed level of treatment required. Much of the federal, state, and local response literature effectively dodges around the issue of triage, and the problem of choosing who will receive limited medical treatment and how these victims will be selected. It does not describe what is done with the assumed dying and untreatable. The broader issue, however, is what indicators will be used for triage and deciding treatment and what treatment should actually be employed.

Food and water contamination can be a serious problem, and add to the response burden in any major attack. Fallout presents special problems since sheltered civilians may not have access to safe water, and urban water systems may be affected.

Corpse disposal may be a major problem as may disposal of dead animals and birds. This aspect of response seems to be largely ignored.

Even military medical handbooks fail to address the psychological impacts of prompt and longer-term effects.

It is far harder to make specific recommendations about courses of action as to how to better respond to such. A great deal of detailed program planning, cost analysis, and net technical assessment is needed which have no yet been performed. However, possible priorities include:

- Improved modeling of real-world urban effects. Modeling of fallout and “rain out” plumes in ways tailored to improve response planning.
- Near real time fallout corridor modeling and data mining. Modeling for needed level of state, regional, and federal response.
- Detection and diagnostic systems – either distributed or rapidly deployable. (e.g. the public transportation sensor grid).
- Monitoring of actual distribution of fallout and weapons effects to give local responders a more precise picture of short and long term response requirements. Real-time transmission to responders, and state, regional, and federal actors. (Often 12-48 hour time window for critical response actions).
- Systems for instant detection and diagnostics, guidance for response and triage. Dosimeters are useless for this purpose. Need clearly defined stay or flee guidance.
- Cheap portable systems for real-time triage analysis.
- Improved detection and characterization of residual threats, decontamination technologies and decon effectiveness measuring systems.
• Hospital technology solutions, rapidly deployable care technology.
• Cheap, simple civil defense options: Masks, no cost what to do technology and advice, media warning and advice alert systems.
Table 4.9

US Department of Defense Estimate of Potential National Threats Intentions Involving Nuclear Weapons

China

China currently has over 100 nuclear warheads and is increasing the size, accuracy, and survivability of its nuclear missile force. It is likely that the number of deployed Chinese theater and strategic systems will increase in the next several years. However, as its strategic requirements evolve, it may change the pace of its modernization effort for its nuclear missile force (particularly if the United States deploys NMD); any warhead improvements will complement China’s missile modernization effort. China currently is not believed to be producing fissile material for nuclear weapons, but has a stockpile of fissile material sufficient to improve or increase its weapons inventory. China has ratified the NPT and signed the CTBT, and has declared it will never use its nuclear forces against a non-nuclear weapons state. China maintains a no-first-use pledge in its strategic nuclear doctrine and regards its strategic nuclear force as a deterrent against intimidation or actual attack. Thus, China’s stated doctrine reportedly calls for a survivable long-range missile force that can hold a significant portion of the U.S. population at risk in a retaliatory strike. As China’s strategic forces and doctrine further evolve, Beijing will continue to develop and deploy more modern ICBMs and SLBMs.

India

On 11 and 13 May 1998, India conducted what it claimed were five nuclear explosive tests. According to Indian officials, the 11 May tests included a fission device with a yield of about 12 kilotons, a thermonuclear device with a yield of about 43 kilotons, and a third test with a yield of about 0.2 kilotons. An Indian spokesman stated that the first set of tests was intended “to establish that India has a proven capability for a weaponized nuclear program.”

India claimed that its 13 May tests had yields of about 0.5 and 0.2 kilotons, which were carried out to generate additional data for computer simulations. According to the Chairman of India’s Atomic Energy Commission, the tests enabled India to build “an adequate scientific database for designing the types of devices that [India] needs for a credible nuclear deterrent.” The tests triggered international condemnation and the United States imposed wide-ranging sanctions against India.

The tests were India’s first since 1974, and reversed the previously ambiguous nuclear posture where Indian officials denied possession of nuclear weapons. Indian officials cited a perceived deterioration of India’s security environment, including increasing Pakistani nuclear and missile capabilities and perceived threats from China, to justify the tests. India has a capable cadre of scientific personnel and a nuclear infrastructure, consisting of numerous research and development centers, 11 nuclear power reactors, uranium mines and processing plants, and facilities to extract plutonium from spent fuel. With this large nuclear infrastructure, India is capable of manufacturing complete sets of components for plutonium-based nuclear weapons, although the acquisition of foreign nuclear-related equipment could benefit New Delhi in its weapons development efforts to develop and produce more sophisticated nuclear weapons. India probably has a small stockpile of nuclear weapon components and could assemble and deploy a few nuclear weapons within a few days to a week. The most likely delivery platforms are fighter-bomber aircraft. New Delhi also is developing ballistic missiles that will be capable of delivering a nuclear payload in the future.

India is in the beginning stages of developing a nuclear doctrine. In August 1999, the Indian government released a proposed nuclear doctrine prepared by a private advisory group appointed by the government. It stated that India will pursue a doctrine of credible minimum deterrence. The document states that the role of nuclear weapons is to deter the use or the threat of use of nuclear weapons against India, and asserts that India will pursue a policy of “retaliatory only.” The draft doctrine maintains that India “will not be the first to initiate a nuclear strike, but will respond with punitive retaliation should deterrence fail.” The doctrine also reaffirms India’s pledge not to use or threaten to use nuclear weapons against states that do not possess nuclear weapons. It further states that India’s nuclear posture will be based on a triad of aircraft, mobile land-based systems, and sea-based plat-forms to provide a redundant, widely dispersed, and flexible nuclear force. Decisions to authorize the use of nuclear weapons would be made by the Prime Minister or his “designated successor(s).” The draft doc-trine has no official standing in India, and the United States has urged Indian officials to distance themselves from the draft, which is nor consistent with India’s stated goal of a minimum nuclear deterrent. India expressed interest in signing the CTBT, but has not done so. It has pledged not to conduct further nuclear tests pending entry into force of the CTBT. Indian officials have tied signature and ratification of the CTBT to developing a domestic consensus on the issue. Similarly, India strongly opposed the NPT as discriminatory but it is a
member of the IAEA. Only four of India’s 13 operational nuclear reactors currently are subject to IAEA safeguards. In June 1998, New Delhi signed a deal with Russia to purchase two light-water reactors to be built in southern India; the reactors will be under facility-specific IAEA safeguards. However, the United States has raised concerns that Russia is circumventing the 1992 NSG guidelines by providing NSG trigger list technology to India, which does not allow safeguards on all of its nuclear facilities. India has taken no steps to restrain its nuclear or missile programs. In addition, while India has agreed to enter into negotiations to complete a fissile material cutoff treaty, it has not agreed to refrain from producing fissile material before such a treaty would enter into force.

Iran

Although a signatory to NPT and the CTBT, Iran also is seeking fissile material and technology for weapons development through an elaborate system of military and civilian organizations. We believe Iran also has an organized structure dedicated to developing nuclear weapons by trying to establish the capability to produce both plutonium and highly enriched uranium. Iran claims to desire the establishment of a complete nuclear fuel cycle for its civilian energy program. In that guise, it seeks to obtain whole facilities that could be used in numerous ways in support of efforts to produce fissile material for a nuclear weapon. The potential availability of black market fissile material also might provide Iran a way to acquire the fissile material necessary for a nuclear weapon.

Iran’s success in achieving a nuclear capability will depend, to a large degree, on the supply policies of Russia and China or on Iran’s successful illicit acquisition of adequate quantities of weapons usable fissile material. Russia is continuing work on a 1,000-megawatt power reactor at Bushehr. Although Russian officials have provided assurances that Russian cooperation with Iran will be limited to the Bushehr reactor project during the period of its construction, the United States Government is aware that a number of Russian entities are engaged in cooperation with Iran that goes beyond this project. One of Iran’s primary goals is the acquisition of a heavy water-moderated, natural uranium-fueled nuclear reactor and associated facilities suitable for the production of weapons-grade plutonium. Although Bushehr will fall under IAEA safeguards, Iran is using this project to seek access to more sensitive nuclear technologies from Russia and to develop expertise in related nuclear technologies. Any such projects will help Iran augment its nuclear technology infrastructure, which in turn would be useful in supporting nuclear weapons research and development.

In the past, Chinese companies have been major suppliers of nuclear-related facilities and technology albeit under IAEA safeguards. China pledged in 1997 that it would not undertake any new nuclear cooperation with Iran and that it would close out its two existing projects—a small research reactor and a zirconium production facility, which will produce cladding for nuclear fuel—as soon as possible. (Neither of these two projects poses a significant proliferation concern.) China also agreed to terminate cooperation on a uranium conversion project. This project would have allowed Iran to produce uranium hexafluoride or uranium dioxide, which are the feedstock materials for the manufacture of weapons grade plutonium. In addition, China announced new export controls in June 1998 that cover the sale of dual-use nuclear equipment. China appears to be living up to its 1997 commitments.

Iraq

Iraq has ratified the NPT. Nevertheless, before the Gulf War, Iraq had a comprehensive nuclear weapons development program that was focused on building an implosion-type device. The program was linked to a ballistic missile project that was the intended delivery system. From April 1991 to December 1998, Iraqi nuclear aspirations were held in check by IAEA/UNSCOM inspections and monitoring. All known weapons-grade fissile material was removed from the country. Although Iraq claims that it destroyed all of the specific equipment and facilities useful for developing nuclear weapons, it still retains sufficient skilled and experienced scientists and engineers as well as weapons design information that could allow it to restart a weapons program.

Iraq would need five or more years and key foreign assistance to rebuild the infrastructure to enrich enough material for a nuclear weapon. This period would be substantially shortened should Baghdad successfully acquire fissile material from a foreign source.

Libya

Libya has ratified the NPT, but has not signed the CTBT and has long intended to develop or acquire nuclear weapons. Libya has made little progress, however, as its nuclear program lacks well-developed plans, expertise, consistent financial support, and adequate foreign suppliers. In the face of these difficulties, nonetheless, Libya likely will continue to try to develop a supporting infrastructure. Libya has a Soviet-supplied research reactor at Tajura that is under IAEA safeguards. The Russians may become
actively involved in the modernization of the Tajura nuclear research center and, in 1999, Tripoli and Moscow resumed discussions on cooperation involving the Tajura reactor as well as a potential power reactor deal. Should this civil sector work come to fruition, Libya could gain opportunities to conduct nuclear weapons-related research and development. Libya reportedly also is trying to recruit foreign scientists and technicians to aid its program.

North Korea

The 1994 Agreed Framework between the United States and North Korea froze nuclear weapons material production at the Yongbyon and Taechon facilities. However, the United States believes North Korea procured and diverted sufficient plutonium for at least one nuclear weapon prior to the agreement. (In any event, North Korea will have to satisfy the International Atomic Energy Agency (IAEA) as to its exact plutonium holdings before key nuclear components can be delivered for the two light-water reactors that are to be provided under the Agreed Framework.) North Korea removed spent fuel from the Yongbyon reactor in 1994. Had Pyongyang reprocessed the spent fuel from the Yongbyon reactor, it could have produced enough plutonium for several nuclear weapons. As part of the Agreed Framework, the IAEA has maintained a continuous presence at Yongbyon, and IAEA personnel have monitored canning of the spent fuel from the reactor. The canning of all accessible spent fuel rods and rod fragments, which was carried out by a team from the United States, under the auspices of the Department of Energy (DOE), was completed in April 2000. The U.S. team maintains a presence at the site to continue maintenance activities. In 1998, the United States became concerned about an underground construction project at Kumchang-ni, in northern North Korea. The site was believed to be large enough to house a plutonium production facility and possibly a reprocessing plant. Through successful negotiations, U.S. officials were permitted to visit the facility at Kumchang-ni in May 1999. Based on the 1999 team's findings, it was concluded that the facility as then configured, was not suited to house graphite-moderated reactors or reprocessing operations. A second visit to Kumchang-ni was conducted in May 2000, during which the team found no evidence to contradict the 1999 conclusions. In the summer of 1999, the United States dispatched former Secretary of Defense William Perry to consult with North Korea on key U.S. security concerns such as its nuclear and missile programs. In the North Korea Policy Review, Dr. Perry concluded that the nuclear freeze instituted at Yongbyon's facilities remained in effect, although the U.S. remains concerned about possible continuing North Korean interest in a nuclear weapons program. Moreover, there is some evidence that North Korea has tried to procure technology that could have applications in its nuclear program. North Korea has ratified the NPT. It has not signed the Comprehensive Test Ban Treaty (CTBT). Dr. Perry recommended that the U.S. should seek the complete and verifiable cessation of testing, production, and deployment of missiles exceeding the parameters of the MTCR, and the complete cessation of export sales of such missiles and the equipment and technology associated with them.

Pakistan

As a response to India's tests, Pakistan conducted its own series of nuclear tests in May 1998. Pakistan claimed to have tested six devices, five on 28 May and one on 30 May. Dr. A. Q. Khan, a key figure in Pakistan's nuclear program, claimed the five devices tested on 28 May were boosted fission devices: a “big bomb” and four tactical weapons of low yield that could be used on small missiles. He also claimed that Pakistan could conduct a fusion or thermonuclear blast if it so desired. The United States imposed additional sanctions against Pakistan as a result of these tests. Pakistan has a well-developed nuclear infrastructure, including facilities for uranium conversion and enrichment and the infrastructure to produce nuclear weapons. Unlike the Indian nuclear program, which uses plutonium for its weapons, Pakistan's program currently is based on highly-enriched uranium. However, Pakistan also is developing the capability to produce plutonium for potential weapons use. An unsafe-guarded heavy-water research reactor built at Khushab will produce plutonium that could be reprocessed for weapons use at facilities under construction. In the past, China supplied Pakistan with nuclear materials and expertise and has provided critical assistance in the production of Pakistan's nuclear facilities. Pakistan also acquired a significant amount of nuclear-related and dual-use equipment and materials from various sources principally in the FSU and Western Europe. Acquisition of nuclear-related goods from foreign sources will remain important if Pakistan chooses to continue to develop and produce more advanced nuclear weapons, although we expect that, with the passage of time, Pakistan will become increasingly self-sufficient. Islamabad likely will increase its nuclear and ballistic missile stockpiles over the next five years.

Islamabad's nuclear weapons are probably stored in component form. Pakistan probably could assemble the weapons fairly quickly and has aircraft and possibly ballistic missiles available for delivery. Pakistan's nuclear weapons program has long been dominated by the military, a dominance that likely has continued under the new military government and under Pakistan's new National Command Authority (NCA), announced in February 2000. While Pakistan has yet to divulge publicly its nuclear doctrine, the new NCA is believed to be responsible for such doctrine, as well as nuclear research and development and wartime command and control. The NCA also includes two committees that advise Pakistan's Chief Executive, General Musharraf, about the development and employment of nuclear weapons.
Pakistan remains steadfast in its refusal to sign the NPT, stating that it would do so only after India joined the Treaty. Consequently, not all of Pakistan’s nuclear facilities are under IAEA safeguards. Pakistani officials have stated that signature of the CTBT is in Pakistan’s best interest, but that Pakistan will do so only after developing a domestic consensus on the issue, and have disavowed any connection with India’s decision. Like India, Pakistan expressed its intention to sign the CTBT, but, so far, has failed to do so. While Pakistan has provided assurances that it will not assemble or deploy its nuclear warheads, nor will it resume testing unless India does so first; it has taken no additional steps. Pakistan has agreed to enter into negotiations to complete a fissile material cutoff agreement, but has not agreed to refrain from producing fissile material before a cutoff treaty would enter into force.

Russia

Moscow increasingly has stated it will rely more heavily on its nuclear forces for deterrent purposes, especially given the serious deterioration of their conventional forces’ capability. Russia conditionally ratified (START II) in May 2000, which, once it enters into force, will limit the number of operational launchers and deployed warheads to 3,000-3,500. In June 1999, former President Yeltsin proposed discussions with the United States for further force reductions in the context of a START III Treaty, with proposed force levels of 1,500-2,000.

The Russian nuclear warhead stockpile is being reduced as a result of tactical nuclear warhead reduction initiatives, while the START I treaty (which entered into force in December 1994) and system aging have resulted in the reduction of deployed strategic warheads. In December 2000, the stockpile was estimated to be well under 25,000 warheads, a reduction of over 11,000 warheads since eliminations began in 1992. By the end of 2010, the overall stockpile likely will be further reduced, depending on the economic situation in Russia, Moscow’s willingness and ability to abide by tactical nuclear warhead reduction pledges, and future arms control agreements. Moscow has consolidated many of its strategic and tactical warheads at central storage locations, and numerous warhead storage sites for holding warheads have been deactivated since the early 1990s. While this consolidation has improved security, current resource shortages have subjected the nuclear storage system to stresses and risks for which it was not designed. Indeed, warhead reductions have had the collateral effect of increasing near- to mid-term fissile material storage requirements, pending the long-term elimination relevant weapons-usable fissile materials.

While Russia’s strategic nuclear forces will retain considerable capability over the next ten years and will serve as its primary means of deterrence, the overall force is expected to continue to decrease because of arms control, economic constraints, and aging equipment. Within ten years, the number of operational strategic warheads will continue to decline. At the same time, however, production of warheads will continue into the 21st century as new strategic missile systems are deployed and obsolete warheads replaced.

For strategic delivery, Russia retains a significant strategic ballistic missile force of some 1,130 operational ICBMs and SLBMs. There no longer are any operationally deployed ICBMs in Ukraine, Kazakhstan, and Belarus. More than 1,250 FSU ICBMs and SLBMs have been removed from the overall force since 1991. This force is likely to decline further as a result of systems aging, chronic funding problems, and arms control agreements. On the other hand, Russia has begun deployment of a new ICBM, the SS-27 (TOPOL-M), and has other missiles planned for deployment in the 21st century. Russia has ratified the NPT and the CTBT.

Because of economic and other difficulties facing Russia and its armed forces, tactical nuclear weapons will remain a viable component of its general purpose forces for at least the next decade. Russia likely believes that maintaining tactical nuclear forces is a less expensive way to compensate for its current problems in maintaining conventional force capabilities. In late 1991 and early 1992, Russia agreed in the Presidential Nuclear Initiatives to a dramatic reduction in its tactical nuclear forces, including the elimination of its ground-launched tactical weapons. Russia still has significant numbers and types of delivery systems capable of performing the tactical nuclear mission. For example, Russia continues to have large inventories of tactical SRBMs (SS-21s), deactivated SCUDs, and a variety of artillery capable of delivering NBC weapons. In fact, Russia employed its tactical SRBMs (with conventional warheads) against the Chechens in the fall of 1999. Air systems include fighter aircraft and bombers. Naval tactical nuclear systems include torpedoes, anti-shipping and anti-submarine warfare missiles, and air-launched munitions carried on naval aircraft. Further, Russia’s industrial base can support production of the full range of solid-and liquid-propellant ballistic missiles, space launch vehicles, and all associated technologies.

In November 1993, the Russian Ministry of Defense formally dropped its wholly declaratory “no first use” of nuclear weapons policy. In its place, the Ministry of Defense published its Basic Provisions of the Military Doctrine of the Russian Federation, in which it articulated its current nuclear policy: “The Russian Federation will not employ its nuclear weapons against any state party to the treaty on the nonproliferation of nuclear weapons, dated 1 July 1968, which does not possess nuclear weapons except in the cases of (a) an armed attack against the Russian Federation, its territory, armed forces, other troops, or its allies by any state that is connected by an alliance agreement with a state that does not possess nuclear weapons or; (b) joint actions by such a
state with a state possessing nuclear weapons in the carrying out or in support of any invasion or armed attack upon the Russian Federation, its territory, armed forces, other troops, or its allies.”

The current Russian doctrine and strategy involving the use of nuclear weapons, reiterated in October 1999, states that “the possibility of the use of nuclear weapons has not been excluded if the situation deteriorates during the course of conventional war.” A revised version of this document was approved by then-Acting President Putin in January 2000, which further lowers the threshold for nuclear use in order to protect Russia’s national interests and territorial integrity; it states: “The application of all forces and means, including nuclear weapons, if necessary to repel armed aggression, if all other measures for resolving the crisis situation have been exhausted or proven ineffective.” In April 2000, the Russians elaborated on this threshold, stating that “the Russian Federation retains the right to use nuclear weapons in response to the use of nuclear weapons, or other types of weapons of mass destruction against itself or its allies, and also in response to large scale aggression with the use conventional weapons in situations critical to the national security of the Russian Federation.”

Syria

Syria is not pursuing the development of nuclear weapons. However, it retains an interest in nuclear technology and has a small Chinese-supplied research reactor, which is under IAEA safeguards. In addition, in May 1999, Syria signed a broad nuclear cooperation agreement with Russia, which includes the construction of a small light-water research reactor, which will be subject to IAEA safeguards. Syria currently lacks the infrastructure and trained personnel to establish a nuclear weapons program. Syria has ratified the NPT, but has not signed the CTBT.

Source: Adapted by Anthony H. Cordesman from Department of Defense, *Proliferation and Response*, January 2001
Table 4.10

The Thermal and Blast Effects of Nuclear Weapons - Part One: The US Department of Defense Estimates

Radii of Effects in Kilometers versus Weapons Yield

<table>
<thead>
<tr>
<th>Effect</th>
<th>1 KT</th>
<th>20 KT</th>
<th>100 KT</th>
<th>1 MT</th>
<th>10 MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Radiation (1,000 cGY or lethal dose in open)</td>
<td>0.71</td>
<td>1.3</td>
<td>1.6</td>
<td>2.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Blast: 50% incidence of translation with subsequent impact on a Non-yielding surface</td>
<td>0.28</td>
<td>1.0</td>
<td>1.4</td>
<td>3.8</td>
<td>11.7</td>
</tr>
<tr>
<td>Thermal: 50% incidence of 2nd degree burns to bare skin, Kilometer visibility</td>
<td>0.77</td>
<td>1.8</td>
<td>3.2</td>
<td>4.8</td>
<td>14.5</td>
</tr>
<tr>
<td>Duration of Thermal Pulse in Seconds</td>
<td>0.12</td>
<td>0.32</td>
<td>0.9</td>
<td>2.4</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Ranges in Kilometers for Probabilities of Flying Debris

<table>
<thead>
<tr>
<th>Yield in KT</th>
<th>Probability of Serious Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>1</td>
<td>0.28</td>
</tr>
<tr>
<td>10</td>
<td>0.73</td>
</tr>
<tr>
<td>20</td>
<td>0.98</td>
</tr>
<tr>
<td>50</td>
<td>1.4</td>
</tr>
<tr>
<td>100</td>
<td>1.9</td>
</tr>
<tr>
<td>200</td>
<td>2.5</td>
</tr>
<tr>
<td>500</td>
<td>3.6</td>
</tr>
<tr>
<td>1000</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Ranges in Kilometers for Translational (Blast) Injuries

<table>
<thead>
<tr>
<th>Yield in KT</th>
<th>Range for Probability Blunt Injuries & Fractures</th>
<th>Range for Probable Fatal Injuries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1%</td>
<td>50%</td>
</tr>
<tr>
<td>1</td>
<td>0.38</td>
<td>0.27</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>0.75</td>
</tr>
<tr>
<td>20</td>
<td>1.3</td>
<td>0.99</td>
</tr>
<tr>
<td>50</td>
<td>1.9</td>
<td>1.4</td>
</tr>
<tr>
<td>100</td>
<td>2.5</td>
<td>1.9</td>
</tr>
<tr>
<td>200</td>
<td>3.2</td>
<td>2.5</td>
</tr>
<tr>
<td>500</td>
<td>4.6</td>
<td>3.6</td>
</tr>
<tr>
<td>1000</td>
<td>5.9</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Source: Adapted from Table 2-1 and Table 2-7 of FM 8-10-7 and Table IV of FM-8-9, Part I, and USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 2-2 and 2-3.
Table 4.10
The Thermal and Blast Effects of Nuclear Weapons - Part Two: The British RUSI Estimates

Radius of Effect in Kilometers

<table>
<thead>
<tr>
<th>Yield in Kilotons</th>
<th>Metals Vaporize</th>
<th>Metals Melt</th>
<th>Wood Burns</th>
<th>3rd Degree Burns</th>
<th>5 psi/160 mph Winds</th>
<th>3 psi/116 mph Winds</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.337</td>
<td>0.675</td>
<td>1.3</td>
<td>1.9</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>20</td>
<td>0.477</td>
<td>0.954</td>
<td>1.9</td>
<td>2.7</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>50</td>
<td>0.754</td>
<td>1.5</td>
<td>3.0</td>
<td>4.3</td>
<td>2.0</td>
<td>2.7</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>2.0</td>
<td>4.3</td>
<td>5.7</td>
<td>2.7</td>
<td>3.5</td>
</tr>
<tr>
<td>200</td>
<td>1.5</td>
<td>2.8</td>
<td>5.7</td>
<td>8.0</td>
<td>3.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Impact of Killing Effects by Yield

<table>
<thead>
<tr>
<th>Cause</th>
<th>Effect</th>
<th>Radius in Nautical Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>40 KT</td>
</tr>
<tr>
<td>Overpressure (crushing)</td>
<td>Lethality threshold</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Severe lung damage</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Broken eardrums</td>
<td>0.3</td>
</tr>
<tr>
<td>Translation</td>
<td>Personnel in open (1%)</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Personnel near structures (1%)</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Personnel near structures (50%)</td>
<td>0.6</td>
</tr>
<tr>
<td>Thermal</td>
<td>Third degree burn – 100%</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>No burns – 100%</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Retinal burn – daytime safe distance</td>
<td>20.0</td>
</tr>
<tr>
<td>Radiation</td>
<td>Lethal does (1,000 rads)</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>No immediate harm (100 rads or less)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Chart 4.4

The Nominal Lethality of Different Nuclear Weapons
(Seriousness of Effect in Kilometers as a Function of Yield)

<table>
<thead>
<tr>
<th></th>
<th>10KT</th>
<th>20 KT</th>
<th>50 KT</th>
<th>100 KT</th>
<th>500 KT</th>
<th>1 MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fireball</td>
<td>0.352</td>
<td>0.464</td>
<td>0.67</td>
<td>0.884</td>
<td>1.6</td>
<td>2.2</td>
</tr>
<tr>
<td>Metals Vaporize</td>
<td>0.337</td>
<td>0.477</td>
<td>0.754</td>
<td>1</td>
<td>2.2</td>
<td>3.2</td>
</tr>
<tr>
<td>10-Psi</td>
<td>0.875</td>
<td>1.1</td>
<td>1.4</td>
<td>1.7</td>
<td>3.2</td>
<td>4</td>
</tr>
<tr>
<td>5-Psi</td>
<td>1.3</td>
<td>2</td>
<td>2.7</td>
<td>3.5</td>
<td>4.8</td>
<td>6.1</td>
</tr>
<tr>
<td>Metals Melt</td>
<td>0.675</td>
<td>0.954</td>
<td>1.5</td>
<td>2</td>
<td>4.5</td>
<td>6.2</td>
</tr>
<tr>
<td>Plastics Melt/Ignite</td>
<td>0.954</td>
<td>1.3</td>
<td>2</td>
<td>2.8</td>
<td>6.2</td>
<td>9.4</td>
</tr>
<tr>
<td>Wood chars/Burns</td>
<td>1.3</td>
<td>1.9</td>
<td>3</td>
<td>4.3</td>
<td>8.8</td>
<td>13.3</td>
</tr>
<tr>
<td>3rd Degree Burns</td>
<td>1.9</td>
<td>2.7</td>
<td>4.3</td>
<td>5.7</td>
<td>13.6</td>
<td>17.2</td>
</tr>
</tbody>
</table>

Source: Adapted by Anthony H. Cordesman from the Royal United Services Institute, Nuclear Attack: Civil Defense, London, RUSI/Brassey's, 1982, pp. 30-36
Chart 4.5

The Relative Killing Effect of Chemical vs. Biological vs. Nuclear Weapons

1 GAO/NSIAD-99-163, Combating Terrorism: Need for Comprehensive Threat and Risk Assessments of Chemical and Biological Attacks, pp. 18-17
5 USACHPPM TG-238, USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 3-4 to 3-6.
6 http://www.defenselink.mil/nubs/i2roll/access tech.html
8 USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, p. 3-4.
9 Joint Publication 3-11 (Draft), Table E-2-6; USACHPPM TG-238; USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 3-16 to 3-17.
11 USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 2-5 to 2-23.
12 USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, p. 3-30.
14 See AFRI, AmedP-6©, and USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 2-15
15 USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, p. 3-16 to 3-17; Joint Publication 3-11 (Draft), FM 8-9-9, FM 8-10-7, AMEED Center and School’s, Effects of Nuclear Weapons and Directed Energy on Military Operations, and DoD 5100.52-M Nuclear Accident Response Procedures Manual – NARP.
16 USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 3-35 to 3-39.
17 See USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, p. 3-32 to 3-34.
19 The core of US treatment and management radiological expertise is located at the Armed Forces Radiobiology Research Institute (AFRRI) in Bethesda, Maryland. AFRRI holds courses on the medical effects of radiation and provides consultative and response support to radiological disasters. AFRRI continues to conduct research to advance the treatment of blood disorders, radiobiological and chemotherapy, and wound healing to the pre- and post-exposure treatment of ionizing radiation exposure.
23 FM 8-10-7, Figure 2-1.
See Table 2-1 and Table 2-7 of FM 8-10-7 and Table IV of FM-8-9, Part I, and USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 2-2 and 2-3
26 See USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, Section 2, Field Manual (FM) 1.1-31-2, FM 3-7, and FM-8-10-7.
28 USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 2-6 to 2-23, and 2-28 to 2-29, FM 8-9, Table 6-II, and FM 8-10-7, Table 4-2.
29 USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 2-5 to 2-23.
31 See AFRRI, AmedP-6©, and USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 2-15
32 These issues are poorly dealt with in most weapons effect manuals, but are discussed in summary form in Office of Technology Assessment, "The Effects of Nuclear War," Washington, US Congress, OTA-NS-89, May 1979.
33 USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, p. 3-16 to 3-17; Joint Publication 3-11 (Draft), FM-8-9, FM 8-10-7, AMEED Center and School’s, Effects of Nuclear Weapons and Directed Energy on Military Operations, and DoD 5100.52-M Nuclear Accident Response Procedures Manual – NARP.
34 See AMEED Center and School, Effects of Nuclear Weapons and Directed Energy on Military Operations, (especially p. 1-34) and USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 3-15 to 3-16.
37 http://www.defenselink.mil/pubs/prolif/access tech.html
42 The above was synthesized from a variety of sources, including recent (May 2001) testimony of DOE/NNSA director, John Gordan and DOE program descriptions
43 See USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, Section 2, Field Manual (FM) 1.1-31-2, FM 3-7, and FM-8-10-7.
45 USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 2-6 to 2-23, and 2-28 to 2-29, FM 8-9, Table 6-II, and FM 8-10-7, Table 4-2.
46 USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 2-5 to 2-23.
48 See AFRRI, AmedP-6©, and USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 2-15
49 These issues are poorly dealt with in most weapons effect manuals, but are discussed in summary form in Office of Technology Assessment, "The Effects of Nuclear War," Washington, US Congress, OTA-NS-89, May 1979.
50 USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, p. 3-16 to 3-17; Joint Publication 3-11 (Draft), FM-8-9, FM 8-10-7, AMEED Center and School’s, Effects of Nuclear Weapons and Directed Energy on Military Operations, and DoD 5100.52-M Nuclear Accident Response Procedures Manual – NARP.
51 See AMEED Center and School, Effects of Nuclear Weapons and Directed Energy on Military Operations, (especially p. 1-34) and USACHPPM, The Medical NBC Battlebook, USACHPPM Technical Guide 244, pp. 3-15 to 3-16.

Copyright CSIS, all rights reserved.